This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrs1mnd.1 | ⊢ 𝑅 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| Assertion | xrge0subm | ⊢ ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrs1mnd.1 | ⊢ 𝑅 = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| 2 | simpl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ℝ* ) | |
| 3 | ge0nemnf | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ≠ -∞ ) | |
| 4 | 2 3 | jca | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞ ) ) |
| 5 | elxrge0 | ⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) ) | |
| 6 | eldifsn | ⊢ ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞ ) ) | |
| 7 | 4 5 6 | 3imtr4i | ⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 8 | 7 | ssriv | ⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
| 9 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 10 | ge0xaddcl | ⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) | |
| 11 | 10 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) |
| 12 | 1 | xrs1mnd | ⊢ 𝑅 ∈ Mnd |
| 13 | difss | ⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* | |
| 14 | xrsbas | ⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) | |
| 15 | 1 14 | ressbas2 | ⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) ) |
| 16 | 13 15 | ax-mp | ⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) |
| 17 | 1 | xrs10 | ⊢ 0 = ( 0g ‘ 𝑅 ) |
| 18 | xrex | ⊢ ℝ* ∈ V | |
| 19 | 18 | difexi | ⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 20 | xrsadd | ⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) | |
| 21 | 1 20 | ressplusg | ⊢ ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g ‘ 𝑅 ) ) |
| 22 | 19 21 | ax-mp | ⊢ +𝑒 = ( +g ‘ 𝑅 ) |
| 23 | 16 17 22 | issubm | ⊢ ( 𝑅 ∈ Mnd → ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) ↔ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) ) ) |
| 24 | 12 23 | ax-mp | ⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) ↔ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) ) |
| 25 | 8 9 11 24 | mpbir3an | ⊢ ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) |