This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 0 ↔ 𝐴 = 0 ) ) |
| 3 | simpr | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) | |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = 0 ↔ 𝐵 = 0 ) ) |
| 5 | 2 4 | orbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 6 | 3 | breq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 0 < 𝑦 ↔ 0 < 𝐵 ) ) |
| 7 | 1 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = +∞ ↔ 𝐴 = +∞ ) ) |
| 8 | 6 7 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ↔ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ) ) |
| 9 | 3 | breq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 < 0 ↔ 𝐵 < 0 ) ) |
| 10 | 1 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = -∞ ↔ 𝐴 = -∞ ) ) |
| 11 | 9 10 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ↔ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) |
| 12 | 8 11 | orbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ↔ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) |
| 13 | 1 | breq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 0 < 𝑥 ↔ 0 < 𝐴 ) ) |
| 14 | 3 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = +∞ ↔ 𝐵 = +∞ ) ) |
| 15 | 13 14 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ↔ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ) |
| 16 | 1 | breq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 < 0 ↔ 𝐴 < 0 ) ) |
| 17 | 3 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = -∞ ↔ 𝐵 = -∞ ) ) |
| 18 | 16 17 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ↔ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) |
| 19 | 15 18 | orbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 20 | 12 19 | orbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
| 21 | 6 10 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ↔ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ) ) |
| 22 | 9 7 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ↔ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) |
| 23 | 21 22 | orbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ↔ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
| 24 | 13 17 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ↔ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ) |
| 25 | 16 14 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ↔ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) |
| 26 | 24 25 | orbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 27 | 23 26 | orbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| 28 | oveq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 · 𝑦 ) = ( 𝐴 · 𝐵 ) ) | |
| 29 | 27 28 | ifbieq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
| 30 | 20 29 | ifbieq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 31 | 5 30 | ifbieq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
| 32 | df-xmul | ⊢ ·e = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ) | |
| 33 | c0ex | ⊢ 0 ∈ V | |
| 34 | pnfex | ⊢ +∞ ∈ V | |
| 35 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 36 | 35 | elexi | ⊢ -∞ ∈ V |
| 37 | ovex | ⊢ ( 𝐴 · 𝐵 ) ∈ V | |
| 38 | 36 37 | ifex | ⊢ if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ∈ V |
| 39 | 34 38 | ifex | ⊢ if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ∈ V |
| 40 | 33 39 | ifex | ⊢ if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ∈ V |
| 41 | 31 32 40 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |