This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xmulneg1 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmullem2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnepnf | ⊢ -∞ ≠ +∞ | |
| 2 | eqeq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 = +∞ ↔ -∞ = +∞ ) ) | |
| 3 | 2 | necon3bbid | ⊢ ( 𝐴 = -∞ → ( ¬ 𝐴 = +∞ ↔ -∞ ≠ +∞ ) ) |
| 4 | 1 3 | mpbiri | ⊢ ( 𝐴 = -∞ → ¬ 𝐴 = +∞ ) |
| 5 | 4 | con2i | ⊢ ( 𝐴 = +∞ → ¬ 𝐴 = -∞ ) |
| 6 | 5 | adantl | ⊢ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐴 = -∞ ) |
| 7 | 0xr | ⊢ 0 ∈ ℝ* | |
| 8 | nltmnf | ⊢ ( 0 ∈ ℝ* → ¬ 0 < -∞ ) | |
| 9 | 7 8 | ax-mp | ⊢ ¬ 0 < -∞ |
| 10 | breq2 | ⊢ ( 𝐴 = -∞ → ( 0 < 𝐴 ↔ 0 < -∞ ) ) | |
| 11 | 9 10 | mtbiri | ⊢ ( 𝐴 = -∞ → ¬ 0 < 𝐴 ) |
| 12 | 11 | con2i | ⊢ ( 0 < 𝐴 → ¬ 𝐴 = -∞ ) |
| 13 | 12 | adantr | ⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐴 = -∞ ) |
| 14 | 6 13 | jaoi | ⊢ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐴 = -∞ ) |
| 15 | 14 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐴 = -∞ ) ) |
| 16 | simpr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) | |
| 17 | xrltnsym | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐵 < 0 → ¬ 0 < 𝐵 ) ) | |
| 18 | 16 7 17 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < 0 → ¬ 0 < 𝐵 ) ) |
| 19 | 18 | adantrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 0 < 𝐵 ) ) |
| 20 | breq2 | ⊢ ( 𝐵 = -∞ → ( 0 < 𝐵 ↔ 0 < -∞ ) ) | |
| 21 | 9 20 | mtbiri | ⊢ ( 𝐵 = -∞ → ¬ 0 < 𝐵 ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 0 < 𝐵 ) |
| 23 | 22 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 0 < 𝐵 ) ) |
| 24 | 19 23 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 0 < 𝐵 ) ) |
| 25 | 15 24 | orim12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵 ) ) ) |
| 26 | ianor | ⊢ ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ↔ ( ¬ 0 < 𝐵 ∨ ¬ 𝐴 = -∞ ) ) | |
| 27 | orcom | ⊢ ( ( ¬ 0 < 𝐵 ∨ ¬ 𝐴 = -∞ ) ↔ ( ¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵 ) ) | |
| 28 | 26 27 | bitri | ⊢ ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ↔ ( ¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵 ) ) |
| 29 | 25 28 | imbitrrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ) ) |
| 30 | 18 | con2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 < 𝐵 → ¬ 𝐵 < 0 ) ) |
| 31 | 30 | adantrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐵 < 0 ) ) |
| 32 | pnfnlt | ⊢ ( 0 ∈ ℝ* → ¬ +∞ < 0 ) | |
| 33 | 7 32 | ax-mp | ⊢ ¬ +∞ < 0 |
| 34 | simpr | ⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → 𝐵 = +∞ ) | |
| 35 | 34 | breq1d | ⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ( 𝐵 < 0 ↔ +∞ < 0 ) ) |
| 36 | 33 35 | mtbiri | ⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 0 ) |
| 37 | 36 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 0 ) ) |
| 38 | 31 37 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐵 < 0 ) ) |
| 39 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = -∞ → ¬ 𝐴 = +∞ ) ) |
| 40 | 39 | adantld | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 𝐴 = +∞ ) ) |
| 41 | breq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 < 0 ↔ +∞ < 0 ) ) | |
| 42 | 33 41 | mtbiri | ⊢ ( 𝐴 = +∞ → ¬ 𝐴 < 0 ) |
| 43 | 42 | con2i | ⊢ ( 𝐴 < 0 → ¬ 𝐴 = +∞ ) |
| 44 | 43 | adantr | ⊢ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 𝐴 = +∞ ) |
| 45 | 44 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 𝐴 = +∞ ) ) |
| 46 | 40 45 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 𝐴 = +∞ ) ) |
| 47 | 38 46 | orim12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞ ) ) ) |
| 48 | ianor | ⊢ ( ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ↔ ( ¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞ ) ) | |
| 49 | 47 48 | imbitrrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) |
| 50 | 29 49 | jcad | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
| 51 | ioran | ⊢ ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ↔ ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) | |
| 52 | 50 51 | imbitrrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
| 53 | 21 | con2i | ⊢ ( 0 < 𝐵 → ¬ 𝐵 = -∞ ) |
| 54 | 53 | adantr | ⊢ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐵 = -∞ ) |
| 55 | 54 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐵 = -∞ ) ) |
| 56 | pnfnemnf | ⊢ +∞ ≠ -∞ | |
| 57 | eqeq1 | ⊢ ( 𝐵 = +∞ → ( 𝐵 = -∞ ↔ +∞ = -∞ ) ) | |
| 58 | 57 | necon3bbid | ⊢ ( 𝐵 = +∞ → ( ¬ 𝐵 = -∞ ↔ +∞ ≠ -∞ ) ) |
| 59 | 56 58 | mpbiri | ⊢ ( 𝐵 = +∞ → ¬ 𝐵 = -∞ ) |
| 60 | 59 | adantl | ⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐵 = -∞ ) |
| 61 | 60 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐵 = -∞ ) ) |
| 62 | 55 61 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐵 = -∞ ) ) |
| 63 | 11 | adantl | ⊢ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 0 < 𝐴 ) |
| 64 | 63 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 0 < 𝐴 ) ) |
| 65 | simpl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) | |
| 66 | xrltnsym | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐴 < 0 → ¬ 0 < 𝐴 ) ) | |
| 67 | 65 7 66 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 0 → ¬ 0 < 𝐴 ) ) |
| 68 | 67 | adantrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 0 < 𝐴 ) ) |
| 69 | 64 68 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 0 < 𝐴 ) ) |
| 70 | 62 69 | orim12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴 ) ) ) |
| 71 | ianor | ⊢ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ↔ ( ¬ 0 < 𝐴 ∨ ¬ 𝐵 = -∞ ) ) | |
| 72 | orcom | ⊢ ( ( ¬ 0 < 𝐴 ∨ ¬ 𝐵 = -∞ ) ↔ ( ¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴 ) ) | |
| 73 | 71 72 | bitri | ⊢ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ↔ ( ¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴 ) ) |
| 74 | 70 73 | imbitrrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ) |
| 75 | 42 | adantl | ⊢ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐴 < 0 ) |
| 76 | 75 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐴 < 0 ) ) |
| 77 | 67 | con2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 < 𝐴 → ¬ 𝐴 < 0 ) ) |
| 78 | 77 | adantrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐴 < 0 ) ) |
| 79 | 76 78 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐴 < 0 ) ) |
| 80 | breq1 | ⊢ ( 𝐵 = +∞ → ( 𝐵 < 0 ↔ +∞ < 0 ) ) | |
| 81 | 33 80 | mtbiri | ⊢ ( 𝐵 = +∞ → ¬ 𝐵 < 0 ) |
| 82 | 81 | con2i | ⊢ ( 𝐵 < 0 → ¬ 𝐵 = +∞ ) |
| 83 | 82 | adantr | ⊢ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 𝐵 = +∞ ) |
| 84 | 59 | con2i | ⊢ ( 𝐵 = -∞ → ¬ 𝐵 = +∞ ) |
| 85 | 84 | adantl | ⊢ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 𝐵 = +∞ ) |
| 86 | 83 85 | jaoi | ⊢ ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 𝐵 = +∞ ) |
| 87 | 86 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 𝐵 = +∞ ) ) |
| 88 | 79 87 | orim12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞ ) ) ) |
| 89 | ianor | ⊢ ( ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ↔ ( ¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞ ) ) | |
| 90 | 88 89 | imbitrrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) |
| 91 | 74 90 | jcad | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 92 | ioran | ⊢ ( ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ↔ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) | |
| 93 | 91 92 | imbitrrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 94 | 52 93 | jcad | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| 95 | or4 | ⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) | |
| 96 | ioran | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) | |
| 97 | 94 95 96 | 3imtr4g | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |