This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus a real number. Remark BourbakiTop1 p. IV.15. (Contributed by FL, 26-Dec-2011) (Proof shortened by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexneg | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg | ⊢ -𝑒 𝐴 = if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) | |
| 2 | renepnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ +∞ ) | |
| 3 | ifnefalse | ⊢ ( 𝐴 ≠ +∞ → if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) = if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) = if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) |
| 5 | renemnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ ) | |
| 6 | ifnefalse | ⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , +∞ , - 𝐴 ) = - 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = -∞ , +∞ , - 𝐴 ) = - 𝐴 ) |
| 8 | 4 7 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) = - 𝐴 ) |
| 9 | 1 8 | eqtrid | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |