This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulneg2 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulneg2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e -𝑒 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmulneg1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -𝑒 𝐵 ·e 𝐴 ) = -𝑒 ( 𝐵 ·e 𝐴 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐵 ·e 𝐴 ) = -𝑒 ( 𝐵 ·e 𝐴 ) ) |
| 3 | xnegcl | ⊢ ( 𝐵 ∈ ℝ* → -𝑒 𝐵 ∈ ℝ* ) | |
| 4 | xmulcom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐵 ∈ ℝ* ) → ( 𝐴 ·e -𝑒 𝐵 ) = ( -𝑒 𝐵 ·e 𝐴 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e -𝑒 𝐵 ) = ( -𝑒 𝐵 ·e 𝐴 ) ) |
| 6 | xmulcom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = ( 𝐵 ·e 𝐴 ) ) | |
| 7 | xnegeq | ⊢ ( ( 𝐴 ·e 𝐵 ) = ( 𝐵 ·e 𝐴 ) → -𝑒 ( 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐵 ·e 𝐴 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → -𝑒 ( 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐵 ·e 𝐴 ) ) |
| 9 | 2 5 8 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e -𝑒 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |