This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rexmul . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmullem | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran | ⊢ ( ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) | |
| 2 | 1 | anbi2i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ) |
| 3 | ioran | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ¬ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) | |
| 4 | ioran | ⊢ ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ↔ ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) | |
| 5 | ioran | ⊢ ( ¬ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ↔ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ¬ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 7 | 3 6 | bitri | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 8 | ioran | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) | |
| 9 | ioran | ⊢ ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ↔ ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) | |
| 10 | ioran | ⊢ ( ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ↔ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) | |
| 11 | 9 10 | anbi12i | ⊢ ( ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 12 | 8 11 | bitri | ⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 13 | 7 12 | anbi12i | ⊢ ( ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ↔ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| 14 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → 𝐴 ∈ ℝ* ) | |
| 15 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 16 | 14 15 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 17 | idd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) ) | |
| 18 | simprlr | ⊢ ( ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) | |
| 19 | 18 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) |
| 20 | 19 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( ( 𝐵 < 0 ∧ 𝐴 = +∞ ) → 𝐴 ∈ ℝ ) ) |
| 21 | 20 | expdimp | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) ∧ 𝐵 < 0 ) → ( 𝐴 = +∞ → 𝐴 ∈ ℝ ) ) |
| 22 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ¬ 𝐵 = 0 ) | |
| 23 | 22 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( 𝐵 = 0 → ( 𝐴 = +∞ → 𝐴 ∈ ℝ ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) ∧ 𝐵 = 0 ) → ( 𝐴 = +∞ → 𝐴 ∈ ℝ ) ) |
| 25 | simplll | ⊢ ( ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ) | |
| 26 | 25 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ) |
| 27 | 26 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → 𝐴 ∈ ℝ ) ) |
| 28 | 27 | expdimp | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) ∧ 0 < 𝐵 ) → ( 𝐴 = +∞ → 𝐴 ∈ ℝ ) ) |
| 29 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → 𝐵 ∈ ℝ* ) | |
| 30 | 0xr | ⊢ 0 ∈ ℝ* | |
| 31 | xrltso | ⊢ < Or ℝ* | |
| 32 | solin | ⊢ ( ( < Or ℝ* ∧ ( 𝐵 ∈ ℝ* ∧ 0 ∈ ℝ* ) ) → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) | |
| 33 | 31 32 | mpan | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) |
| 34 | 29 30 33 | sylancl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) |
| 35 | 21 24 28 34 | mpjao3dan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( 𝐴 = +∞ → 𝐴 ∈ ℝ ) ) |
| 36 | simpllr | ⊢ ( ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) | |
| 37 | 36 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) |
| 38 | 37 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → 𝐴 ∈ ℝ ) ) |
| 39 | 38 | expdimp | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) ∧ 𝐵 < 0 ) → ( 𝐴 = -∞ → 𝐴 ∈ ℝ ) ) |
| 40 | 22 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( 𝐵 = 0 → ( 𝐴 = -∞ → 𝐴 ∈ ℝ ) ) ) |
| 41 | 40 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) ∧ 𝐵 = 0 ) → ( 𝐴 = -∞ → 𝐴 ∈ ℝ ) ) |
| 42 | simprll | ⊢ ( ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ) | |
| 43 | 42 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ) |
| 44 | 43 | pm2.21d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) → 𝐴 ∈ ℝ ) ) |
| 45 | 44 | expdimp | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) ∧ 0 < 𝐵 ) → ( 𝐴 = -∞ → 𝐴 ∈ ℝ ) ) |
| 46 | 39 41 45 34 | mpjao3dan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( 𝐴 = -∞ → 𝐴 ∈ ℝ ) ) |
| 47 | 17 35 46 | 3jaod | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → 𝐴 ∈ ℝ ) ) |
| 48 | 16 47 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) ∧ ( ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ( ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → 𝐴 ∈ ℝ ) |
| 49 | 2 13 48 | syl2anb | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) → 𝐴 ∈ ℝ ) |
| 50 | 49 | anassrs | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐴 ∈ ℝ ) |