This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xmeter.1 | ⊢ ∼ = ( ◡ 𝐷 “ ℝ ) | |
| Assertion | xmeter | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∼ Er 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 | ⊢ ∼ = ( ◡ 𝐷 “ ℝ ) | |
| 2 | cnvimass | ⊢ ( ◡ 𝐷 “ ℝ ) ⊆ dom 𝐷 | |
| 3 | 1 2 | eqsstri | ⊢ ∼ ⊆ dom 𝐷 |
| 4 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 5 | 3 4 | fssdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∼ ⊆ ( 𝑋 × 𝑋 ) ) |
| 6 | relxp | ⊢ Rel ( 𝑋 × 𝑋 ) | |
| 7 | relss | ⊢ ( ∼ ⊆ ( 𝑋 × 𝑋 ) → ( Rel ( 𝑋 × 𝑋 ) → Rel ∼ ) ) | |
| 8 | 5 6 7 | mpisyl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → Rel ∼ ) |
| 9 | 1 | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) ) |
| 10 | 9 | biimpa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) |
| 11 | 10 | simp2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∈ 𝑋 ) |
| 12 | 10 | simp1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑥 ∈ 𝑋 ) |
| 13 | simpl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 14 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) | |
| 15 | 13 12 11 14 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
| 16 | 10 | simp3d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 17 | 15 16 | eqeltrrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) |
| 18 | 1 | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 20 | 11 12 17 19 | mpbir3and | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∼ 𝑥 ) |
| 21 | 12 | adantrr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∈ 𝑋 ) |
| 22 | 1 | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) ) |
| 23 | 22 | biimpa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∼ 𝑧 ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) |
| 24 | 23 | adantrl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) |
| 25 | 24 | simp2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑧 ∈ 𝑋 ) |
| 26 | simpl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 27 | 16 | adantrr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 28 | 24 | simp3d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) |
| 29 | rexadd | ⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) = ( ( 𝑥 𝐷 𝑦 ) + ( 𝑦 𝐷 𝑧 ) ) ) | |
| 30 | readdcl | ⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) + ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) | |
| 31 | 29 30 | eqeltrd | ⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) |
| 32 | 27 28 31 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) |
| 33 | 11 | adantrr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑦 ∈ 𝑋 ) |
| 34 | xmettri | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) | |
| 35 | 26 21 25 33 34 | syl13anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
| 36 | xmetlecl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ∧ ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) | |
| 37 | 26 21 25 32 35 36 | syl122anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) |
| 38 | 1 | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) ) ) |
| 40 | 21 25 37 39 | mpbir3and | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∼ 𝑧 ) |
| 41 | xmet0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑥 ) = 0 ) | |
| 42 | 0re | ⊢ 0 ∈ ℝ | |
| 43 | 41 42 | eqeltrdi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) |
| 44 | 43 | ex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 → ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) |
| 45 | 44 | pm4.71rd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 46 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) | |
| 47 | anidm | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) | |
| 48 | 47 | anbi2ci | ⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
| 49 | 46 48 | bitri | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
| 50 | 45 49 | bitr4di | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 51 | 1 | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 52 | 50 51 | bitr4d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥 ) ) |
| 53 | 8 20 40 52 | iserd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∼ Er 𝑋 ) |