This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xmeter.1 | |- .~ = ( `' D " RR ) |
|
| Assertion | xmeter | |- ( D e. ( *Met ` X ) -> .~ Er X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 | |- .~ = ( `' D " RR ) |
|
| 2 | cnvimass | |- ( `' D " RR ) C_ dom D |
|
| 3 | 1 2 | eqsstri | |- .~ C_ dom D |
| 4 | xmetf | |- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 5 | 3 4 | fssdm | |- ( D e. ( *Met ` X ) -> .~ C_ ( X X. X ) ) |
| 6 | relxp | |- Rel ( X X. X ) |
|
| 7 | relss | |- ( .~ C_ ( X X. X ) -> ( Rel ( X X. X ) -> Rel .~ ) ) |
|
| 8 | 5 6 7 | mpisyl | |- ( D e. ( *Met ` X ) -> Rel .~ ) |
| 9 | 1 | xmeterval | |- ( D e. ( *Met ` X ) -> ( x .~ y <-> ( x e. X /\ y e. X /\ ( x D y ) e. RR ) ) ) |
| 10 | 9 | biimpa | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> ( x e. X /\ y e. X /\ ( x D y ) e. RR ) ) |
| 11 | 10 | simp2d | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> y e. X ) |
| 12 | 10 | simp1d | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> x e. X ) |
| 13 | simpl | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> D e. ( *Met ` X ) ) |
|
| 14 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ y e. X ) -> ( x D y ) = ( y D x ) ) |
|
| 15 | 13 12 11 14 | syl3anc | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> ( x D y ) = ( y D x ) ) |
| 16 | 10 | simp3d | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> ( x D y ) e. RR ) |
| 17 | 15 16 | eqeltrrd | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> ( y D x ) e. RR ) |
| 18 | 1 | xmeterval | |- ( D e. ( *Met ` X ) -> ( y .~ x <-> ( y e. X /\ x e. X /\ ( y D x ) e. RR ) ) ) |
| 19 | 18 | adantr | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> ( y .~ x <-> ( y e. X /\ x e. X /\ ( y D x ) e. RR ) ) ) |
| 20 | 11 12 17 19 | mpbir3and | |- ( ( D e. ( *Met ` X ) /\ x .~ y ) -> y .~ x ) |
| 21 | 12 | adantrr | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> x e. X ) |
| 22 | 1 | xmeterval | |- ( D e. ( *Met ` X ) -> ( y .~ z <-> ( y e. X /\ z e. X /\ ( y D z ) e. RR ) ) ) |
| 23 | 22 | biimpa | |- ( ( D e. ( *Met ` X ) /\ y .~ z ) -> ( y e. X /\ z e. X /\ ( y D z ) e. RR ) ) |
| 24 | 23 | adantrl | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> ( y e. X /\ z e. X /\ ( y D z ) e. RR ) ) |
| 25 | 24 | simp2d | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> z e. X ) |
| 26 | simpl | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> D e. ( *Met ` X ) ) |
|
| 27 | 16 | adantrr | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> ( x D y ) e. RR ) |
| 28 | 24 | simp3d | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> ( y D z ) e. RR ) |
| 29 | rexadd | |- ( ( ( x D y ) e. RR /\ ( y D z ) e. RR ) -> ( ( x D y ) +e ( y D z ) ) = ( ( x D y ) + ( y D z ) ) ) |
|
| 30 | readdcl | |- ( ( ( x D y ) e. RR /\ ( y D z ) e. RR ) -> ( ( x D y ) + ( y D z ) ) e. RR ) |
|
| 31 | 29 30 | eqeltrd | |- ( ( ( x D y ) e. RR /\ ( y D z ) e. RR ) -> ( ( x D y ) +e ( y D z ) ) e. RR ) |
| 32 | 27 28 31 | syl2anc | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> ( ( x D y ) +e ( y D z ) ) e. RR ) |
| 33 | 11 | adantrr | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> y e. X ) |
| 34 | xmettri | |- ( ( D e. ( *Met ` X ) /\ ( x e. X /\ z e. X /\ y e. X ) ) -> ( x D z ) <_ ( ( x D y ) +e ( y D z ) ) ) |
|
| 35 | 26 21 25 33 34 | syl13anc | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> ( x D z ) <_ ( ( x D y ) +e ( y D z ) ) ) |
| 36 | xmetlecl | |- ( ( D e. ( *Met ` X ) /\ ( x e. X /\ z e. X ) /\ ( ( ( x D y ) +e ( y D z ) ) e. RR /\ ( x D z ) <_ ( ( x D y ) +e ( y D z ) ) ) ) -> ( x D z ) e. RR ) |
|
| 37 | 26 21 25 32 35 36 | syl122anc | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> ( x D z ) e. RR ) |
| 38 | 1 | xmeterval | |- ( D e. ( *Met ` X ) -> ( x .~ z <-> ( x e. X /\ z e. X /\ ( x D z ) e. RR ) ) ) |
| 39 | 38 | adantr | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> ( x .~ z <-> ( x e. X /\ z e. X /\ ( x D z ) e. RR ) ) ) |
| 40 | 21 25 37 39 | mpbir3and | |- ( ( D e. ( *Met ` X ) /\ ( x .~ y /\ y .~ z ) ) -> x .~ z ) |
| 41 | xmet0 | |- ( ( D e. ( *Met ` X ) /\ x e. X ) -> ( x D x ) = 0 ) |
|
| 42 | 0re | |- 0 e. RR |
|
| 43 | 41 42 | eqeltrdi | |- ( ( D e. ( *Met ` X ) /\ x e. X ) -> ( x D x ) e. RR ) |
| 44 | 43 | ex | |- ( D e. ( *Met ` X ) -> ( x e. X -> ( x D x ) e. RR ) ) |
| 45 | 44 | pm4.71rd | |- ( D e. ( *Met ` X ) -> ( x e. X <-> ( ( x D x ) e. RR /\ x e. X ) ) ) |
| 46 | df-3an | |- ( ( x e. X /\ x e. X /\ ( x D x ) e. RR ) <-> ( ( x e. X /\ x e. X ) /\ ( x D x ) e. RR ) ) |
|
| 47 | anidm | |- ( ( x e. X /\ x e. X ) <-> x e. X ) |
|
| 48 | 47 | anbi2ci | |- ( ( ( x e. X /\ x e. X ) /\ ( x D x ) e. RR ) <-> ( ( x D x ) e. RR /\ x e. X ) ) |
| 49 | 46 48 | bitri | |- ( ( x e. X /\ x e. X /\ ( x D x ) e. RR ) <-> ( ( x D x ) e. RR /\ x e. X ) ) |
| 50 | 45 49 | bitr4di | |- ( D e. ( *Met ` X ) -> ( x e. X <-> ( x e. X /\ x e. X /\ ( x D x ) e. RR ) ) ) |
| 51 | 1 | xmeterval | |- ( D e. ( *Met ` X ) -> ( x .~ x <-> ( x e. X /\ x e. X /\ ( x D x ) e. RR ) ) ) |
| 52 | 50 51 | bitr4d | |- ( D e. ( *Met ` X ) -> ( x e. X <-> x .~ x ) ) |
| 53 | 8 20 40 52 | iserd | |- ( D e. ( *Met ` X ) -> .~ Er X ) |