This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj , infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xmeter.1 | ⊢ ∼ = ( ◡ 𝐷 “ ℝ ) | |
| Assertion | xmetec | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → [ 𝑃 ] ∼ = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 | ⊢ ∼ = ( ◡ 𝐷 “ ℝ ) | |
| 2 | 1 | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑃 ∼ 𝑥 ↔ ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 3 | 3anass | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) | |
| 4 | 3 | baib | ⊢ ( 𝑃 ∈ 𝑋 → ( ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 5 | 2 4 | sylan9bb | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | a1i | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑥 ∈ V ) |
| 8 | elecg | ⊢ ( ( 𝑥 ∈ V ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] ∼ ↔ 𝑃 ∼ 𝑥 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] ∼ ↔ 𝑃 ∼ 𝑥 ) ) |
| 10 | xblpnf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) | |
| 11 | 5 9 10 | 3bitr4d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] ∼ ↔ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) ) |
| 12 | 11 | eqrdv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → [ 𝑃 ] ∼ = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |