This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetlecl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
| 4 | simp3l | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) | |
| 5 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) | |
| 6 | 5 | 3expb | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 8 | simp3r | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) | |
| 9 | xrrege0 | ⊢ ( ( ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 𝐷 𝐵 ) ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) | |
| 10 | 3 4 7 8 9 | syl22anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) |