This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xmeter.1 | ⊢ ∼ = ( ◡ 𝐷 “ ℝ ) | |
| Assertion | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 | ⊢ ∼ = ( ◡ 𝐷 “ ℝ ) | |
| 2 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 3 | ffn | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) | |
| 4 | elpreima | ⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( ◡ 𝐷 “ ℝ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) ) ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( ◡ 𝐷 “ ℝ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) ) ) |
| 6 | 1 | breqi | ⊢ ( 𝐴 ∼ 𝐵 ↔ 𝐴 ( ◡ 𝐷 “ ℝ ) 𝐵 ) |
| 7 | df-br | ⊢ ( 𝐴 ( ◡ 𝐷 “ ℝ ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ◡ 𝐷 “ ℝ ) ) | |
| 8 | 6 7 | bitri | ⊢ ( 𝐴 ∼ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ◡ 𝐷 “ ℝ ) ) |
| 9 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ) | |
| 10 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) | |
| 11 | 10 | bicomi | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 12 | df-ov | ⊢ ( 𝐴 𝐷 𝐵 ) = ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 13 | 12 | eleq1i | ⊢ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ ↔ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) |
| 14 | 11 13 | anbi12i | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) ) |
| 15 | 9 14 | bitri | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) ) |
| 16 | 5 8 15 | 3bitr4g | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ) ) |