This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Forward direction of xltneg . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xltnegi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 3 | ltneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) ) | |
| 4 | rexneg | ⊢ ( 𝐵 ∈ ℝ → -𝑒 𝐵 = - 𝐵 ) | |
| 5 | rexneg | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) | |
| 6 | 4 5 | breqan12rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( -𝑒 𝐵 < -𝑒 𝐴 ↔ - 𝐵 < - 𝐴 ) ) |
| 7 | 3 6 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 8 | 7 | biimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 9 | xnegeq | ⊢ ( 𝐵 = +∞ → -𝑒 𝐵 = -𝑒 +∞ ) | |
| 10 | xnegpnf | ⊢ -𝑒 +∞ = -∞ | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝐵 = +∞ → -𝑒 𝐵 = -∞ ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → -𝑒 𝐵 = -∞ ) |
| 13 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 14 | 5 13 | eqeltrd | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ ) |
| 15 | 14 | mnfltd | ⊢ ( 𝐴 ∈ ℝ → -∞ < -𝑒 𝐴 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → -∞ < -𝑒 𝐴 ) |
| 17 | 12 16 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → -𝑒 𝐵 < -𝑒 𝐴 ) |
| 18 | 17 | a1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 19 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → 𝐵 = -∞ ) | |
| 20 | 19 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
| 21 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 22 | nltmnf | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < -∞ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
| 25 | 24 | pm2.21d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < -∞ → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 26 | 20 25 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 27 | 8 18 26 | 3jaodan | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 28 | 2 27 | sylan2b | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 29 | 28 | expimpd | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 30 | simpl | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → 𝐴 = +∞ ) | |
| 31 | 30 | breq1d | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 32 | pnfnlt | ⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
| 34 | 33 | pm2.21d | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( +∞ < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 35 | 31 34 | sylbid | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 36 | 35 | expimpd | ⊢ ( 𝐴 = +∞ → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 37 | breq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 < 𝐵 ↔ -∞ < 𝐵 ) ) | |
| 38 | 37 | anbi2d | ⊢ ( 𝐴 = -∞ → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ↔ ( 𝐵 ∈ ℝ* ∧ -∞ < 𝐵 ) ) ) |
| 39 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 40 | 4 39 | eqeltrd | ⊢ ( 𝐵 ∈ ℝ → -𝑒 𝐵 ∈ ℝ ) |
| 41 | 40 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 ∈ ℝ ) |
| 42 | 41 | ltpnfd | ⊢ ( ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
| 43 | 11 | adantr | ⊢ ( ( 𝐵 = +∞ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 = -∞ ) |
| 44 | mnfltpnf | ⊢ -∞ < +∞ | |
| 45 | 43 44 | eqbrtrdi | ⊢ ( ( 𝐵 = +∞ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
| 46 | breq2 | ⊢ ( 𝐵 = -∞ → ( -∞ < 𝐵 ↔ -∞ < -∞ ) ) | |
| 47 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 48 | nltmnf | ⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) | |
| 49 | 47 48 | ax-mp | ⊢ ¬ -∞ < -∞ |
| 50 | 49 | pm2.21i | ⊢ ( -∞ < -∞ → -𝑒 𝐵 < +∞ ) |
| 51 | 46 50 | biimtrdi | ⊢ ( 𝐵 = -∞ → ( -∞ < 𝐵 → -𝑒 𝐵 < +∞ ) ) |
| 52 | 51 | imp | ⊢ ( ( 𝐵 = -∞ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
| 53 | 42 45 52 | 3jaoian | ⊢ ( ( ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
| 54 | 2 53 | sylanb | ⊢ ( ( 𝐵 ∈ ℝ* ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
| 55 | xnegeq | ⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) | |
| 56 | xnegmnf | ⊢ -𝑒 -∞ = +∞ | |
| 57 | 55 56 | eqtrdi | ⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = +∞ ) |
| 58 | 57 | breq2d | ⊢ ( 𝐴 = -∞ → ( -𝑒 𝐵 < -𝑒 𝐴 ↔ -𝑒 𝐵 < +∞ ) ) |
| 59 | 54 58 | imbitrrid | ⊢ ( 𝐴 = -∞ → ( ( 𝐵 ∈ ℝ* ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 60 | 38 59 | sylbid | ⊢ ( 𝐴 = -∞ → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 61 | 29 36 60 | 3jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 62 | 1 61 | sylbi | ⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
| 63 | 62 | 3impib | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) |