This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Forward direction of xltneg . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xltnegi | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> -e B < -e A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 3 | ltneg | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -u B < -u A ) ) |
|
| 4 | rexneg | |- ( B e. RR -> -e B = -u B ) |
|
| 5 | rexneg | |- ( A e. RR -> -e A = -u A ) |
|
| 6 | 4 5 | breqan12rd | |- ( ( A e. RR /\ B e. RR ) -> ( -e B < -e A <-> -u B < -u A ) ) |
| 7 | 3 6 | bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -e B < -e A ) ) |
| 8 | 7 | biimpd | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> -e B < -e A ) ) |
| 9 | xnegeq | |- ( B = +oo -> -e B = -e +oo ) |
|
| 10 | xnegpnf | |- -e +oo = -oo |
|
| 11 | 9 10 | eqtrdi | |- ( B = +oo -> -e B = -oo ) |
| 12 | 11 | adantl | |- ( ( A e. RR /\ B = +oo ) -> -e B = -oo ) |
| 13 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 14 | 5 13 | eqeltrd | |- ( A e. RR -> -e A e. RR ) |
| 15 | 14 | mnfltd | |- ( A e. RR -> -oo < -e A ) |
| 16 | 15 | adantr | |- ( ( A e. RR /\ B = +oo ) -> -oo < -e A ) |
| 17 | 12 16 | eqbrtrd | |- ( ( A e. RR /\ B = +oo ) -> -e B < -e A ) |
| 18 | 17 | a1d | |- ( ( A e. RR /\ B = +oo ) -> ( A < B -> -e B < -e A ) ) |
| 19 | simpr | |- ( ( A e. RR /\ B = -oo ) -> B = -oo ) |
|
| 20 | 19 | breq2d | |- ( ( A e. RR /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
| 21 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 22 | nltmnf | |- ( A e. RR* -> -. A < -oo ) |
|
| 23 | 21 22 | syl | |- ( A e. RR -> -. A < -oo ) |
| 24 | 23 | adantr | |- ( ( A e. RR /\ B = -oo ) -> -. A < -oo ) |
| 25 | 24 | pm2.21d | |- ( ( A e. RR /\ B = -oo ) -> ( A < -oo -> -e B < -e A ) ) |
| 26 | 20 25 | sylbid | |- ( ( A e. RR /\ B = -oo ) -> ( A < B -> -e B < -e A ) ) |
| 27 | 8 18 26 | 3jaodan | |- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -e B < -e A ) ) |
| 28 | 2 27 | sylan2b | |- ( ( A e. RR /\ B e. RR* ) -> ( A < B -> -e B < -e A ) ) |
| 29 | 28 | expimpd | |- ( A e. RR -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 30 | simpl | |- ( ( A = +oo /\ B e. RR* ) -> A = +oo ) |
|
| 31 | 30 | breq1d | |- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
| 32 | pnfnlt | |- ( B e. RR* -> -. +oo < B ) |
|
| 33 | 32 | adantl | |- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
| 34 | 33 | pm2.21d | |- ( ( A = +oo /\ B e. RR* ) -> ( +oo < B -> -e B < -e A ) ) |
| 35 | 31 34 | sylbid | |- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> -e B < -e A ) ) |
| 36 | 35 | expimpd | |- ( A = +oo -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 37 | breq1 | |- ( A = -oo -> ( A < B <-> -oo < B ) ) |
|
| 38 | 37 | anbi2d | |- ( A = -oo -> ( ( B e. RR* /\ A < B ) <-> ( B e. RR* /\ -oo < B ) ) ) |
| 39 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 40 | 4 39 | eqeltrd | |- ( B e. RR -> -e B e. RR ) |
| 41 | 40 | adantr | |- ( ( B e. RR /\ -oo < B ) -> -e B e. RR ) |
| 42 | 41 | ltpnfd | |- ( ( B e. RR /\ -oo < B ) -> -e B < +oo ) |
| 43 | 11 | adantr | |- ( ( B = +oo /\ -oo < B ) -> -e B = -oo ) |
| 44 | mnfltpnf | |- -oo < +oo |
|
| 45 | 43 44 | eqbrtrdi | |- ( ( B = +oo /\ -oo < B ) -> -e B < +oo ) |
| 46 | breq2 | |- ( B = -oo -> ( -oo < B <-> -oo < -oo ) ) |
|
| 47 | mnfxr | |- -oo e. RR* |
|
| 48 | nltmnf | |- ( -oo e. RR* -> -. -oo < -oo ) |
|
| 49 | 47 48 | ax-mp | |- -. -oo < -oo |
| 50 | 49 | pm2.21i | |- ( -oo < -oo -> -e B < +oo ) |
| 51 | 46 50 | biimtrdi | |- ( B = -oo -> ( -oo < B -> -e B < +oo ) ) |
| 52 | 51 | imp | |- ( ( B = -oo /\ -oo < B ) -> -e B < +oo ) |
| 53 | 42 45 52 | 3jaoian | |- ( ( ( B e. RR \/ B = +oo \/ B = -oo ) /\ -oo < B ) -> -e B < +oo ) |
| 54 | 2 53 | sylanb | |- ( ( B e. RR* /\ -oo < B ) -> -e B < +oo ) |
| 55 | xnegeq | |- ( A = -oo -> -e A = -e -oo ) |
|
| 56 | xnegmnf | |- -e -oo = +oo |
|
| 57 | 55 56 | eqtrdi | |- ( A = -oo -> -e A = +oo ) |
| 58 | 57 | breq2d | |- ( A = -oo -> ( -e B < -e A <-> -e B < +oo ) ) |
| 59 | 54 58 | imbitrrid | |- ( A = -oo -> ( ( B e. RR* /\ -oo < B ) -> -e B < -e A ) ) |
| 60 | 38 59 | sylbid | |- ( A = -oo -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 61 | 29 36 60 | 3jaoi | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 62 | 1 61 | sylbi | |- ( A e. RR* -> ( ( B e. RR* /\ A < B ) -> -e B < -e A ) ) |
| 63 | 62 | 3impib | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> -e B < -e A ) |