This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function, then g |-> g o. F is a continuous function on function spaces. (The reason we prove this and xkoco2cn independently of the more general xkococn is because that requires some inconvenient extra assumptions on S .) (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkoco1cn.t | ⊢ ( 𝜑 → 𝑇 ∈ Top ) | |
| xkoco1cn.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ) | ||
| Assertion | xkoco1cn | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( 𝑇 ↑ko 𝑆 ) Cn ( 𝑇 ↑ko 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkoco1cn.t | ⊢ ( 𝜑 → 𝑇 ∈ Top ) | |
| 2 | xkoco1cn.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ) | |
| 3 | cnco | ⊢ ( ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ∧ 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑔 ∘ 𝐹 ) ∈ ( 𝑅 Cn 𝑇 ) ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑔 ∘ 𝐹 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
| 5 | 4 | fmpttd | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) : ( 𝑆 Cn 𝑇 ) ⟶ ( 𝑅 Cn 𝑇 ) ) |
| 6 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 7 | eqid | ⊢ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } = { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } | |
| 8 | eqid | ⊢ ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) | |
| 9 | 6 7 8 | xkobval | ⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = { 𝑥 ∣ ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ∃ 𝑣 ∈ 𝑇 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) } |
| 10 | 9 | eqabri | ⊢ ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ∃ 𝑣 ∈ 𝑇 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 11 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ) |
| 12 | 11 3 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ∧ 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑔 ∘ 𝐹 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
| 13 | imaeq1 | ⊢ ( ℎ = ( 𝑔 ∘ 𝐹 ) → ( ℎ “ 𝑘 ) = ( ( 𝑔 ∘ 𝐹 ) “ 𝑘 ) ) | |
| 14 | imaco | ⊢ ( ( 𝑔 ∘ 𝐹 ) “ 𝑘 ) = ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) | |
| 15 | 13 14 | eqtrdi | ⊢ ( ℎ = ( 𝑔 ∘ 𝐹 ) → ( ℎ “ 𝑘 ) = ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ) |
| 16 | 15 | sseq1d | ⊢ ( ℎ = ( 𝑔 ∘ 𝐹 ) → ( ( ℎ “ 𝑘 ) ⊆ 𝑣 ↔ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 ) ) |
| 17 | 16 | elrab3 | ⊢ ( ( 𝑔 ∘ 𝐹 ) ∈ ( 𝑅 Cn 𝑇 ) → ( ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 ) ) |
| 18 | 12 17 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ∧ 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ) → ( ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 ) ) |
| 19 | 18 | rabbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } = { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 } ) |
| 20 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 21 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) → 𝑆 ∈ Top ) | |
| 22 | 2 21 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Top ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → 𝑆 ∈ Top ) |
| 24 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → 𝑇 ∈ Top ) |
| 25 | imassrn | ⊢ ( 𝐹 “ 𝑘 ) ⊆ ran 𝐹 | |
| 26 | 6 20 | cnf | ⊢ ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) → 𝐹 : ∪ 𝑅 ⟶ ∪ 𝑆 ) |
| 27 | frn | ⊢ ( 𝐹 : ∪ 𝑅 ⟶ ∪ 𝑆 → ran 𝐹 ⊆ ∪ 𝑆 ) | |
| 28 | 11 26 27 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ran 𝐹 ⊆ ∪ 𝑆 ) |
| 29 | 25 28 | sstrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( 𝐹 “ 𝑘 ) ⊆ ∪ 𝑆 ) |
| 30 | imacmp | ⊢ ( ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( 𝑆 ↾t ( 𝐹 “ 𝑘 ) ) ∈ Comp ) | |
| 31 | 11 30 | sylancom | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( 𝑆 ↾t ( 𝐹 “ 𝑘 ) ) ∈ Comp ) |
| 32 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → 𝑣 ∈ 𝑇 ) | |
| 33 | 20 23 24 29 31 32 | xkoopn | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 } ∈ ( 𝑇 ↑ko 𝑆 ) ) |
| 34 | 19 33 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ∈ ( 𝑇 ↑ko 𝑆 ) ) |
| 35 | imaeq2 | ⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) = ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) | |
| 36 | eqid | ⊢ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) = ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) | |
| 37 | 36 | mptpreima | ⊢ ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } |
| 38 | 35 37 | eqtrdi | ⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) = { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ) |
| 39 | 38 | eleq1d | ⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ↔ { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 40 | 34 39 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 41 | 40 | expimpd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) → ( ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 42 | 41 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ∃ 𝑣 ∈ 𝑇 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 43 | 10 42 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 44 | 43 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) |
| 45 | eqid | ⊢ ( 𝑇 ↑ko 𝑆 ) = ( 𝑇 ↑ko 𝑆 ) | |
| 46 | 45 | xkotopon | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ) |
| 47 | 22 1 46 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ) |
| 48 | ovex | ⊢ ( 𝑅 Cn 𝑇 ) ∈ V | |
| 49 | 48 | pwex | ⊢ 𝒫 ( 𝑅 Cn 𝑇 ) ∈ V |
| 50 | 6 7 8 | xkotf | ⊢ ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } × 𝑇 ) ⟶ 𝒫 ( 𝑅 Cn 𝑇 ) |
| 51 | frn | ⊢ ( ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } × 𝑇 ) ⟶ 𝒫 ( 𝑅 Cn 𝑇 ) → ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑇 ) ) | |
| 52 | 50 51 | ax-mp | ⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑇 ) |
| 53 | 49 52 | ssexi | ⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ V |
| 54 | 53 | a1i | ⊢ ( 𝜑 → ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ V ) |
| 55 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) → 𝑅 ∈ Top ) | |
| 56 | 2 55 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Top ) |
| 57 | 6 7 8 | xkoval | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 58 | 56 1 57 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 59 | eqid | ⊢ ( 𝑇 ↑ko 𝑅 ) = ( 𝑇 ↑ko 𝑅 ) | |
| 60 | 59 | xkotopon | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑇 ) ) ) |
| 61 | 56 1 60 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑇 ) ) ) |
| 62 | 47 54 58 61 | subbascn | ⊢ ( 𝜑 → ( ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( 𝑇 ↑ko 𝑆 ) Cn ( 𝑇 ↑ko 𝑅 ) ) ↔ ( ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) : ( 𝑆 Cn 𝑇 ) ⟶ ( 𝑅 Cn 𝑇 ) ∧ ∀ 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) ) |
| 63 | 5 44 62 | mpbir2and | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( 𝑇 ↑ko 𝑆 ) Cn ( 𝑇 ↑ko 𝑅 ) ) ) |