This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkoval.x | ⊢ 𝑋 = ∪ 𝑅 | |
| xkoval.k | ⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } | ||
| xkoval.t | ⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) | ||
| Assertion | xkoval | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkoval.x | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | xkoval.k | ⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } | |
| 3 | xkoval.t | ⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) | |
| 4 | simpr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) | |
| 5 | 4 | unieqd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ∪ 𝑟 = ∪ 𝑅 ) |
| 6 | 5 1 | eqtr4di | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ∪ 𝑟 = 𝑋 ) |
| 7 | 6 | pweqd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝒫 ∪ 𝑟 = 𝒫 𝑋 ) |
| 8 | 4 | oveq1d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑟 ↾t 𝑥 ) = ( 𝑅 ↾t 𝑥 ) ) |
| 9 | 8 | eleq1d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( ( 𝑟 ↾t 𝑥 ) ∈ Comp ↔ ( 𝑅 ↾t 𝑥 ) ∈ Comp ) ) |
| 10 | 7 9 | rabeqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ) |
| 11 | 10 2 | eqtr4di | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } = 𝐾 ) |
| 12 | simpl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑠 = 𝑆 ) | |
| 13 | 4 12 | oveq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑟 Cn 𝑠 ) = ( 𝑅 Cn 𝑆 ) ) |
| 14 | 13 | rabeqdv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 15 | 11 12 14 | mpoeq123dv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 16 | 15 3 | eqtr4di | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = 𝑇 ) |
| 17 | 16 | rneqd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ran 𝑇 ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) = ( fi ‘ ran 𝑇 ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) = ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ) |
| 20 | df-xko | ⊢ ↑ko = ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) | |
| 21 | fvex | ⊢ ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ∈ V | |
| 22 | 19 20 21 | ovmpoa | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑅 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ) |
| 23 | 22 | ancoms | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ) |