This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkoval.x | ⊢ 𝑋 = ∪ 𝑅 | |
| xkoval.k | ⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } | ||
| xkoval.t | ⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) | ||
| Assertion | xkobval | ⊢ ran 𝑇 = { 𝑠 ∣ ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkoval.x | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | xkoval.k | ⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } | |
| 3 | xkoval.t | ⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) | |
| 4 | 3 | rnmpo | ⊢ ran 𝑇 = { 𝑠 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } } |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑅 ↾t 𝑥 ) = ( 𝑅 ↾t 𝑘 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑅 ↾t 𝑥 ) ∈ Comp ↔ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) |
| 7 | 6 | rexrab | ⊢ ( ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ 𝒫 𝑋 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 8 | 2 | rexeqi | ⊢ ( ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 9 | r19.42v | ⊢ ( ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ↔ ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) | |
| 10 | 9 | rexbii | ⊢ ( ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ↔ ∃ 𝑘 ∈ 𝒫 𝑋 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 11 | 7 8 10 | 3bitr4i | ⊢ ( ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 12 | 11 | abbii | ⊢ { 𝑠 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } } = { 𝑠 ∣ ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) } |
| 13 | 4 12 | eqtri | ⊢ ran 𝑇 = { 𝑠 ∣ ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) } |