This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of function T . (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkoval.x | ⊢ 𝑋 = ∪ 𝑅 | |
| xkoval.k | ⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } | ||
| xkoval.t | ⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) | ||
| Assertion | xkotf | ⊢ 𝑇 : ( 𝐾 × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkoval.x | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | xkoval.k | ⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } | |
| 3 | xkoval.t | ⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) | |
| 4 | ovex | ⊢ ( 𝑅 Cn 𝑆 ) ∈ V | |
| 5 | ssrab2 | ⊢ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ⊆ ( 𝑅 Cn 𝑆 ) | |
| 6 | 4 5 | elpwi2 | ⊢ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 ) |
| 7 | 6 | rgen2w | ⊢ ∀ 𝑘 ∈ 𝐾 ∀ 𝑣 ∈ 𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 ) |
| 8 | 3 | fmpo | ⊢ ( ∀ 𝑘 ∈ 𝐾 ∀ 𝑣 ∈ 𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 ) ↔ 𝑇 : ( 𝐾 × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) ) |
| 9 | 7 8 | mpbi | ⊢ 𝑇 : ( 𝐾 × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) |