This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | ||
| wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | ||
| wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | ||
| wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | ||
| wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | ||
| wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| Assertion | wlkp1lem4 | ⊢ ( 𝜑 → ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | |
| 12 | wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | |
| 13 | wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | |
| 14 | wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | |
| 15 | wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 16 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 17 | 16 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 18 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 19 | 18 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 20 | 17 19 | jca | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 21 | 8 20 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 22 | 6 15 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( Vtx ‘ 𝑆 ) ) |
| 23 | 22 | elfvexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝑆 ∈ V ) |
| 25 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) | |
| 26 | snex | ⊢ { 〈 𝑁 , 𝐵 〉 } ∈ V | |
| 27 | unexg | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ { 〈 𝑁 , 𝐵 〉 } ∈ V ) → ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ∈ V ) | |
| 28 | 25 26 27 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ∈ V ) |
| 29 | 13 28 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝐻 ∈ V ) |
| 30 | ovex | ⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∈ V | |
| 31 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 32 | 30 31 | fpm | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 ∈ ( ( Vtx ‘ 𝐺 ) ↑pm ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 33 | 32 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝑃 ∈ ( ( Vtx ‘ 𝐺 ) ↑pm ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 34 | snex | ⊢ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ∈ V | |
| 35 | unexg | ⊢ ( ( 𝑃 ∈ ( ( Vtx ‘ 𝐺 ) ↑pm ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ∧ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ∈ V ) → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ∈ V ) | |
| 36 | 33 34 35 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ∈ V ) |
| 37 | 14 36 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → 𝑄 ∈ V ) |
| 38 | 24 29 37 | 3jca | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
| 39 | 21 38 | mpdan | ⊢ ( 𝜑 → ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |