This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for wlkd . (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkd.p | ⊢ ( 𝜑 → 𝑃 ∈ Word V ) | |
| wlkd.f | ⊢ ( 𝜑 → 𝐹 ∈ Word V ) | ||
| wlkd.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) | ||
| wlkdlem1.v | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) | ||
| Assertion | wlkdlem1 | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | ⊢ ( 𝜑 → 𝑃 ∈ Word V ) | |
| 2 | wlkd.f | ⊢ ( 𝜑 → 𝐹 ∈ Word V ) | |
| 3 | wlkd.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) | |
| 4 | wlkdlem1.v | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) | |
| 5 | wrdf | ⊢ ( 𝑃 ∈ Word V → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ) |
| 7 | 3 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 8 | lencl | ⊢ ( 𝐹 ∈ Word V → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 10 | 9 | nn0zd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 11 | fzval3 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 13 | 7 12 | eqtr4d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 14 | 13 | feq2d | ⊢ ( 𝜑 → ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ) ) |
| 15 | ssv | ⊢ 𝑉 ⊆ V | |
| 16 | fcdmssb | ⊢ ( ( 𝑉 ⊆ V ∧ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) | |
| 17 | 15 4 16 | sylancr | ⊢ ( 𝜑 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 18 | 14 17 | bitrd | ⊢ ( 𝜑 → ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 19 | 6 18 | mpbid | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |