This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer an ordering on characteristic functions by isomorphism to the power set. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wepwso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ) } | |
| wepwso.u | ⊢ 𝑈 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| wepwso.f | ⊢ 𝐹 = ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) | ||
| Assertion | wepwsolem | ⊢ ( 𝐴 ∈ V → 𝐹 Isom 𝑈 , 𝑇 ( ( 2o ↑m 𝐴 ) , 𝒫 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wepwso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ) } | |
| 2 | wepwso.u | ⊢ 𝑈 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 3 | wepwso.f | ⊢ 𝐹 = ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) | |
| 4 | 3 | pw2f1o2 | ⊢ ( 𝐴 ∈ V → 𝐹 : ( 2o ↑m 𝐴 ) –1-1-onto→ 𝒫 𝐴 ) |
| 5 | fvex | ⊢ ( 𝑐 ‘ 𝑧 ) ∈ V | |
| 6 | 5 | epeli | ⊢ ( ( 𝑏 ‘ 𝑧 ) E ( 𝑐 ‘ 𝑧 ) ↔ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) |
| 7 | elmapi | ⊢ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) → 𝑏 : 𝐴 ⟶ 2o ) | |
| 8 | 7 | ad2antrl | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) → 𝑏 : 𝐴 ⟶ 2o ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑏 ‘ 𝑧 ) ∈ 2o ) |
| 10 | elmapi | ⊢ ( 𝑐 ∈ ( 2o ↑m 𝐴 ) → 𝑐 : 𝐴 ⟶ 2o ) | |
| 11 | 10 | ad2antll | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) → 𝑐 : 𝐴 ⟶ 2o ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑐 ‘ 𝑧 ) ∈ 2o ) |
| 13 | n0i | ⊢ ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) → ¬ ( 𝑐 ‘ 𝑧 ) = ∅ ) | |
| 14 | 13 | adantl | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) → ¬ ( 𝑐 ‘ 𝑧 ) = ∅ ) |
| 15 | elpri | ⊢ ( ( 𝑐 ‘ 𝑧 ) ∈ { ∅ , 1o } → ( ( 𝑐 ‘ 𝑧 ) = ∅ ∨ ( 𝑐 ‘ 𝑧 ) = 1o ) ) | |
| 16 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 17 | 15 16 | eleq2s | ⊢ ( ( 𝑐 ‘ 𝑧 ) ∈ 2o → ( ( 𝑐 ‘ 𝑧 ) = ∅ ∨ ( 𝑐 ‘ 𝑧 ) = 1o ) ) |
| 18 | 17 | ad2antlr | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) → ( ( 𝑐 ‘ 𝑧 ) = ∅ ∨ ( 𝑐 ‘ 𝑧 ) = 1o ) ) |
| 19 | orel1 | ⊢ ( ¬ ( 𝑐 ‘ 𝑧 ) = ∅ → ( ( ( 𝑐 ‘ 𝑧 ) = ∅ ∨ ( 𝑐 ‘ 𝑧 ) = 1o ) → ( 𝑐 ‘ 𝑧 ) = 1o ) ) | |
| 20 | 14 18 19 | sylc | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) → ( 𝑐 ‘ 𝑧 ) = 1o ) |
| 21 | 1on | ⊢ 1o ∈ On | |
| 22 | 21 | onirri | ⊢ ¬ 1o ∈ 1o |
| 23 | eleq12 | ⊢ ( ( ( 𝑏 ‘ 𝑧 ) = 1o ∧ ( 𝑐 ‘ 𝑧 ) = 1o ) → ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ↔ 1o ∈ 1o ) ) | |
| 24 | 23 | biimpd | ⊢ ( ( ( 𝑏 ‘ 𝑧 ) = 1o ∧ ( 𝑐 ‘ 𝑧 ) = 1o ) → ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) → 1o ∈ 1o ) ) |
| 25 | 24 | expcom | ⊢ ( ( 𝑐 ‘ 𝑧 ) = 1o → ( ( 𝑏 ‘ 𝑧 ) = 1o → ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) → 1o ∈ 1o ) ) ) |
| 26 | 25 | com3r | ⊢ ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) → ( ( 𝑐 ‘ 𝑧 ) = 1o → ( ( 𝑏 ‘ 𝑧 ) = 1o → 1o ∈ 1o ) ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ∧ ( 𝑐 ‘ 𝑧 ) = 1o ) → ( ( 𝑏 ‘ 𝑧 ) = 1o → 1o ∈ 1o ) ) |
| 28 | 27 | adantll | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) ∧ ( 𝑐 ‘ 𝑧 ) = 1o ) → ( ( 𝑏 ‘ 𝑧 ) = 1o → 1o ∈ 1o ) ) |
| 29 | 22 28 | mtoi | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) ∧ ( 𝑐 ‘ 𝑧 ) = 1o ) → ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) |
| 30 | 20 29 | mpdan | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) → ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) |
| 31 | 20 30 | jca | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) → ( ( 𝑐 ‘ 𝑧 ) = 1o ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) |
| 32 | elpri | ⊢ ( ( 𝑏 ‘ 𝑧 ) ∈ { ∅ , 1o } → ( ( 𝑏 ‘ 𝑧 ) = ∅ ∨ ( 𝑏 ‘ 𝑧 ) = 1o ) ) | |
| 33 | 32 16 | eleq2s | ⊢ ( ( 𝑏 ‘ 𝑧 ) ∈ 2o → ( ( 𝑏 ‘ 𝑧 ) = ∅ ∨ ( 𝑏 ‘ 𝑧 ) = 1o ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) → ( ( 𝑏 ‘ 𝑧 ) = ∅ ∨ ( 𝑏 ‘ 𝑧 ) = 1o ) ) |
| 35 | orel2 | ⊢ ( ¬ ( 𝑏 ‘ 𝑧 ) = 1o → ( ( ( 𝑏 ‘ 𝑧 ) = ∅ ∨ ( 𝑏 ‘ 𝑧 ) = 1o ) → ( 𝑏 ‘ 𝑧 ) = ∅ ) ) | |
| 36 | 34 35 | mpan9 | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) → ( 𝑏 ‘ 𝑧 ) = ∅ ) |
| 37 | 36 | adantrl | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( ( 𝑐 ‘ 𝑧 ) = 1o ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) → ( 𝑏 ‘ 𝑧 ) = ∅ ) |
| 38 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 39 | 37 38 | eqeltrdi | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( ( 𝑐 ‘ 𝑧 ) = 1o ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) → ( 𝑏 ‘ 𝑧 ) ∈ 1o ) |
| 40 | simprl | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( ( 𝑐 ‘ 𝑧 ) = 1o ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) → ( 𝑐 ‘ 𝑧 ) = 1o ) | |
| 41 | 39 40 | eleqtrrd | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) ∧ ( ( 𝑐 ‘ 𝑧 ) = 1o ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) → ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ) |
| 42 | 31 41 | impbida | ⊢ ( ( ( 𝑏 ‘ 𝑧 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑧 ) ∈ 2o ) → ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ↔ ( ( 𝑐 ‘ 𝑧 ) = 1o ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) ) |
| 43 | 9 12 42 | syl2anc | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ↔ ( ( 𝑐 ‘ 𝑧 ) = 1o ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) ) |
| 44 | simplrr | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑐 ∈ ( 2o ↑m 𝐴 ) ) | |
| 45 | 3 | pw2f1o2val2 | ⊢ ( ( 𝑐 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ↔ ( 𝑐 ‘ 𝑧 ) = 1o ) ) |
| 46 | 44 45 | sylancom | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ↔ ( 𝑐 ‘ 𝑧 ) = 1o ) ) |
| 47 | simplrl | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑏 ∈ ( 2o ↑m 𝐴 ) ) | |
| 48 | 3 | pw2f1o2val2 | ⊢ ( ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ↔ ( 𝑏 ‘ 𝑧 ) = 1o ) ) |
| 49 | 47 48 | sylancom | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ↔ ( 𝑏 ‘ 𝑧 ) = 1o ) ) |
| 50 | 49 | notbid | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ↔ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) |
| 51 | 46 50 | anbi12d | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝑐 ‘ 𝑧 ) = 1o ∧ ¬ ( 𝑏 ‘ 𝑧 ) = 1o ) ) ) |
| 52 | 43 51 | bitr4d | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑏 ‘ 𝑧 ) ∈ ( 𝑐 ‘ 𝑧 ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 53 | 6 52 | bitrid | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑏 ‘ 𝑧 ) E ( 𝑐 ‘ 𝑧 ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 54 | 8 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑏 ‘ 𝑤 ) ∈ 2o ) |
| 55 | 11 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑐 ‘ 𝑤 ) ∈ 2o ) |
| 56 | eqeq1 | ⊢ ( ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) → ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) | |
| 57 | simplr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = ∅ ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( 𝑏 ‘ 𝑤 ) = ∅ ) | |
| 58 | 1n0 | ⊢ 1o ≠ ∅ | |
| 59 | 58 | nesymi | ⊢ ¬ ∅ = 1o |
| 60 | eqeq1 | ⊢ ( ( 𝑏 ‘ 𝑤 ) = ∅ → ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ∅ = 1o ) ) | |
| 61 | 59 60 | mtbiri | ⊢ ( ( 𝑏 ‘ 𝑤 ) = ∅ → ¬ ( 𝑏 ‘ 𝑤 ) = 1o ) |
| 62 | 61 | ad2antlr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = ∅ ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ¬ ( 𝑏 ‘ 𝑤 ) = 1o ) |
| 63 | simpr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = ∅ ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) | |
| 64 | 62 63 | mtbid | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = ∅ ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ¬ ( 𝑐 ‘ 𝑤 ) = 1o ) |
| 65 | elpri | ⊢ ( ( 𝑐 ‘ 𝑤 ) ∈ { ∅ , 1o } → ( ( 𝑐 ‘ 𝑤 ) = ∅ ∨ ( 𝑐 ‘ 𝑤 ) = 1o ) ) | |
| 66 | 65 16 | eleq2s | ⊢ ( ( 𝑐 ‘ 𝑤 ) ∈ 2o → ( ( 𝑐 ‘ 𝑤 ) = ∅ ∨ ( 𝑐 ‘ 𝑤 ) = 1o ) ) |
| 67 | 66 | ad3antlr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = ∅ ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( ( 𝑐 ‘ 𝑤 ) = ∅ ∨ ( 𝑐 ‘ 𝑤 ) = 1o ) ) |
| 68 | orel2 | ⊢ ( ¬ ( 𝑐 ‘ 𝑤 ) = 1o → ( ( ( 𝑐 ‘ 𝑤 ) = ∅ ∨ ( 𝑐 ‘ 𝑤 ) = 1o ) → ( 𝑐 ‘ 𝑤 ) = ∅ ) ) | |
| 69 | 64 67 68 | sylc | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = ∅ ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( 𝑐 ‘ 𝑤 ) = ∅ ) |
| 70 | 57 69 | eqtr4d | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = ∅ ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) |
| 71 | 70 | ex | ⊢ ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = ∅ ) → ( ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) |
| 72 | simplr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = 1o ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( 𝑏 ‘ 𝑤 ) = 1o ) | |
| 73 | simpr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = 1o ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) | |
| 74 | 72 73 | mpbid | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = 1o ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( 𝑐 ‘ 𝑤 ) = 1o ) |
| 75 | 72 74 | eqtr4d | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = 1o ) ∧ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) |
| 76 | 75 | ex | ⊢ ( ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) ∧ ( 𝑏 ‘ 𝑤 ) = 1o ) → ( ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) |
| 77 | elpri | ⊢ ( ( 𝑏 ‘ 𝑤 ) ∈ { ∅ , 1o } → ( ( 𝑏 ‘ 𝑤 ) = ∅ ∨ ( 𝑏 ‘ 𝑤 ) = 1o ) ) | |
| 78 | 77 16 | eleq2s | ⊢ ( ( 𝑏 ‘ 𝑤 ) ∈ 2o → ( ( 𝑏 ‘ 𝑤 ) = ∅ ∨ ( 𝑏 ‘ 𝑤 ) = 1o ) ) |
| 79 | 78 | adantr | ⊢ ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) → ( ( 𝑏 ‘ 𝑤 ) = ∅ ∨ ( 𝑏 ‘ 𝑤 ) = 1o ) ) |
| 80 | 71 76 79 | mpjaodan | ⊢ ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) → ( ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) |
| 81 | 56 80 | impbid2 | ⊢ ( ( ( 𝑏 ‘ 𝑤 ) ∈ 2o ∧ ( 𝑐 ‘ 𝑤 ) ∈ 2o ) → ( ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ↔ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) ) |
| 82 | 54 55 81 | syl2anc | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ↔ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) ) |
| 83 | simplrl | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑏 ∈ ( 2o ↑m 𝐴 ) ) | |
| 84 | 3 | pw2f1o2val2 | ⊢ ( ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ ( 𝑏 ‘ 𝑤 ) = 1o ) ) |
| 85 | 83 84 | sylancom | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ ( 𝑏 ‘ 𝑤 ) = 1o ) ) |
| 86 | simplrr | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑐 ∈ ( 2o ↑m 𝐴 ) ) | |
| 87 | 3 | pw2f1o2val2 | ⊢ ( ( 𝑐 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) |
| 88 | 86 87 | sylancom | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) |
| 89 | 85 88 | bibi12d | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ( 𝑏 ‘ 𝑤 ) = 1o ↔ ( 𝑐 ‘ 𝑤 ) = 1o ) ) ) |
| 90 | 82 89 | bitr4d | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ↔ ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 91 | 90 | imbi2d | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ↔ ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 92 | 91 | ralbidva | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 93 | 92 | adantr | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 94 | 53 93 | anbi12d | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑏 ‘ 𝑧 ) E ( 𝑐 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) ↔ ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
| 95 | 94 | rexbidva | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑏 ‘ 𝑧 ) E ( 𝑐 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
| 96 | vex | ⊢ 𝑏 ∈ V | |
| 97 | vex | ⊢ 𝑐 ∈ V | |
| 98 | fveq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 ‘ 𝑧 ) = ( 𝑏 ‘ 𝑧 ) ) | |
| 99 | fveq1 | ⊢ ( 𝑦 = 𝑐 → ( 𝑦 ‘ 𝑧 ) = ( 𝑐 ‘ 𝑧 ) ) | |
| 100 | 98 99 | breqan12d | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑏 ‘ 𝑧 ) E ( 𝑐 ‘ 𝑧 ) ) ) |
| 101 | fveq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) ) | |
| 102 | fveq1 | ⊢ ( 𝑦 = 𝑐 → ( 𝑦 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) | |
| 103 | 101 102 | eqeqan12d | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) |
| 104 | 103 | imbi2d | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → ( ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 105 | 104 | ralbidv | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 106 | 100 105 | anbi12d | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → ( ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑏 ‘ 𝑧 ) E ( 𝑐 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) ) ) |
| 107 | 106 | rexbidv | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑏 ‘ 𝑧 ) E ( 𝑐 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) ) ) |
| 108 | 96 97 107 2 | braba | ⊢ ( 𝑏 𝑈 𝑐 ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑏 ‘ 𝑧 ) E ( 𝑐 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑏 ‘ 𝑤 ) = ( 𝑐 ‘ 𝑤 ) ) ) ) |
| 109 | fvex | ⊢ ( 𝐹 ‘ 𝑏 ) ∈ V | |
| 110 | fvex | ⊢ ( 𝐹 ‘ 𝑐 ) ∈ V | |
| 111 | eleq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑐 ) → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 112 | eleq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ) | |
| 113 | 112 | notbid | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → ( ¬ 𝑧 ∈ 𝑥 ↔ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ) |
| 114 | 111 113 | bi2anan9r | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑏 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑐 ) ) → ( ( 𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥 ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 115 | eleq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ) ) | |
| 116 | eleq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑐 ) → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 117 | 115 116 | bi2bian9 | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑏 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑐 ) ) → ( ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ↔ ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 118 | 117 | imbi2d | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑏 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑐 ) ) → ( ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ↔ ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 119 | 118 | ralbidv | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑏 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑐 ) ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 120 | 114 119 | anbi12d | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑏 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑐 ) ) → ( ( ( 𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ) ↔ ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
| 121 | 120 | rexbidv | ⊢ ( ( 𝑥 = ( 𝐹 ‘ 𝑏 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
| 122 | 109 110 121 1 | braba | ⊢ ( ( 𝐹 ‘ 𝑏 ) 𝑇 ( 𝐹 ‘ 𝑐 ) ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑐 ) ∧ ¬ 𝑧 ∈ ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ ( 𝐹 ‘ 𝑏 ) ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 123 | 95 108 122 | 3bitr4g | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑏 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑐 ∈ ( 2o ↑m 𝐴 ) ) ) → ( 𝑏 𝑈 𝑐 ↔ ( 𝐹 ‘ 𝑏 ) 𝑇 ( 𝐹 ‘ 𝑐 ) ) ) |
| 124 | 123 | ralrimivva | ⊢ ( 𝐴 ∈ V → ∀ 𝑏 ∈ ( 2o ↑m 𝐴 ) ∀ 𝑐 ∈ ( 2o ↑m 𝐴 ) ( 𝑏 𝑈 𝑐 ↔ ( 𝐹 ‘ 𝑏 ) 𝑇 ( 𝐹 ‘ 𝑐 ) ) ) |
| 125 | df-isom | ⊢ ( 𝐹 Isom 𝑈 , 𝑇 ( ( 2o ↑m 𝐴 ) , 𝒫 𝐴 ) ↔ ( 𝐹 : ( 2o ↑m 𝐴 ) –1-1-onto→ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ( 2o ↑m 𝐴 ) ∀ 𝑐 ∈ ( 2o ↑m 𝐴 ) ( 𝑏 𝑈 𝑐 ↔ ( 𝐹 ‘ 𝑏 ) 𝑇 ( 𝐹 ‘ 𝑐 ) ) ) ) | |
| 126 | 4 124 125 | sylanbrc | ⊢ ( 𝐴 ∈ V → 𝐹 Isom 𝑈 , 𝑇 ( ( 2o ↑m 𝐴 ) , 𝒫 𝐴 ) ) |