This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer an ordering on characteristic functions by isomorphism to the power set. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wepwso.t | |- T = { <. x , y >. | E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) } |
|
| wepwso.u | |- U = { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
||
| wepwso.f | |- F = ( a e. ( 2o ^m A ) |-> ( `' a " { 1o } ) ) |
||
| Assertion | wepwsolem | |- ( A e. _V -> F Isom U , T ( ( 2o ^m A ) , ~P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wepwso.t | |- T = { <. x , y >. | E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) } |
|
| 2 | wepwso.u | |- U = { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 3 | wepwso.f | |- F = ( a e. ( 2o ^m A ) |-> ( `' a " { 1o } ) ) |
|
| 4 | 3 | pw2f1o2 | |- ( A e. _V -> F : ( 2o ^m A ) -1-1-onto-> ~P A ) |
| 5 | fvex | |- ( c ` z ) e. _V |
|
| 6 | 5 | epeli | |- ( ( b ` z ) _E ( c ` z ) <-> ( b ` z ) e. ( c ` z ) ) |
| 7 | elmapi | |- ( b e. ( 2o ^m A ) -> b : A --> 2o ) |
|
| 8 | 7 | ad2antrl | |- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> b : A --> 2o ) |
| 9 | 8 | ffvelcdmda | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( b ` z ) e. 2o ) |
| 10 | elmapi | |- ( c e. ( 2o ^m A ) -> c : A --> 2o ) |
|
| 11 | 10 | ad2antll | |- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> c : A --> 2o ) |
| 12 | 11 | ffvelcdmda | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( c ` z ) e. 2o ) |
| 13 | n0i | |- ( ( b ` z ) e. ( c ` z ) -> -. ( c ` z ) = (/) ) |
|
| 14 | 13 | adantl | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> -. ( c ` z ) = (/) ) |
| 15 | elpri | |- ( ( c ` z ) e. { (/) , 1o } -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) |
|
| 16 | df2o3 | |- 2o = { (/) , 1o } |
|
| 17 | 15 16 | eleq2s | |- ( ( c ` z ) e. 2o -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) |
| 18 | 17 | ad2antlr | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) |
| 19 | orel1 | |- ( -. ( c ` z ) = (/) -> ( ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) -> ( c ` z ) = 1o ) ) |
|
| 20 | 14 18 19 | sylc | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( c ` z ) = 1o ) |
| 21 | 1on | |- 1o e. On |
|
| 22 | 21 | onirri | |- -. 1o e. 1o |
| 23 | eleq12 | |- ( ( ( b ` z ) = 1o /\ ( c ` z ) = 1o ) -> ( ( b ` z ) e. ( c ` z ) <-> 1o e. 1o ) ) |
|
| 24 | 23 | biimpd | |- ( ( ( b ` z ) = 1o /\ ( c ` z ) = 1o ) -> ( ( b ` z ) e. ( c ` z ) -> 1o e. 1o ) ) |
| 25 | 24 | expcom | |- ( ( c ` z ) = 1o -> ( ( b ` z ) = 1o -> ( ( b ` z ) e. ( c ` z ) -> 1o e. 1o ) ) ) |
| 26 | 25 | com3r | |- ( ( b ` z ) e. ( c ` z ) -> ( ( c ` z ) = 1o -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) ) |
| 27 | 26 | imp | |- ( ( ( b ` z ) e. ( c ` z ) /\ ( c ` z ) = 1o ) -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) |
| 28 | 27 | adantll | |- ( ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) /\ ( c ` z ) = 1o ) -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) |
| 29 | 22 28 | mtoi | |- ( ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) /\ ( c ` z ) = 1o ) -> -. ( b ` z ) = 1o ) |
| 30 | 20 29 | mpdan | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> -. ( b ` z ) = 1o ) |
| 31 | 20 30 | jca | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) |
| 32 | elpri | |- ( ( b ` z ) e. { (/) , 1o } -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) |
|
| 33 | 32 16 | eleq2s | |- ( ( b ` z ) e. 2o -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) |
| 34 | 33 | adantr | |- ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) |
| 35 | orel2 | |- ( -. ( b ` z ) = 1o -> ( ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) -> ( b ` z ) = (/) ) ) |
|
| 36 | 34 35 | mpan9 | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ -. ( b ` z ) = 1o ) -> ( b ` z ) = (/) ) |
| 37 | 36 | adantrl | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) = (/) ) |
| 38 | 0lt1o | |- (/) e. 1o |
|
| 39 | 37 38 | eqeltrdi | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) e. 1o ) |
| 40 | simprl | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( c ` z ) = 1o ) |
|
| 41 | 39 40 | eleqtrrd | |- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) e. ( c ` z ) ) |
| 42 | 31 41 | impbida | |- ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) -> ( ( b ` z ) e. ( c ` z ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) |
| 43 | 9 12 42 | syl2anc | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) e. ( c ` z ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) |
| 44 | simplrr | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> c e. ( 2o ^m A ) ) |
|
| 45 | 3 | pw2f1o2val2 | |- ( ( c e. ( 2o ^m A ) /\ z e. A ) -> ( z e. ( F ` c ) <-> ( c ` z ) = 1o ) ) |
| 46 | 44 45 | sylancom | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( z e. ( F ` c ) <-> ( c ` z ) = 1o ) ) |
| 47 | simplrl | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> b e. ( 2o ^m A ) ) |
|
| 48 | 3 | pw2f1o2val2 | |- ( ( b e. ( 2o ^m A ) /\ z e. A ) -> ( z e. ( F ` b ) <-> ( b ` z ) = 1o ) ) |
| 49 | 47 48 | sylancom | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( z e. ( F ` b ) <-> ( b ` z ) = 1o ) ) |
| 50 | 49 | notbid | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( -. z e. ( F ` b ) <-> -. ( b ` z ) = 1o ) ) |
| 51 | 46 50 | anbi12d | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) |
| 52 | 43 51 | bitr4d | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) e. ( c ` z ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) |
| 53 | 6 52 | bitrid | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) _E ( c ` z ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) |
| 54 | 8 | ffvelcdmda | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( b ` w ) e. 2o ) |
| 55 | 11 | ffvelcdmda | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( c ` w ) e. 2o ) |
| 56 | eqeq1 | |- ( ( b ` w ) = ( c ` w ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) |
|
| 57 | simplr | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = (/) ) |
|
| 58 | 1n0 | |- 1o =/= (/) |
|
| 59 | 58 | nesymi | |- -. (/) = 1o |
| 60 | eqeq1 | |- ( ( b ` w ) = (/) -> ( ( b ` w ) = 1o <-> (/) = 1o ) ) |
|
| 61 | 59 60 | mtbiri | |- ( ( b ` w ) = (/) -> -. ( b ` w ) = 1o ) |
| 62 | 61 | ad2antlr | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> -. ( b ` w ) = 1o ) |
| 63 | simpr | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) |
|
| 64 | 62 63 | mtbid | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> -. ( c ` w ) = 1o ) |
| 65 | elpri | |- ( ( c ` w ) e. { (/) , 1o } -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) |
|
| 66 | 65 16 | eleq2s | |- ( ( c ` w ) e. 2o -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) |
| 67 | 66 | ad3antlr | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) |
| 68 | orel2 | |- ( -. ( c ` w ) = 1o -> ( ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) -> ( c ` w ) = (/) ) ) |
|
| 69 | 64 67 68 | sylc | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( c ` w ) = (/) ) |
| 70 | 57 69 | eqtr4d | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = ( c ` w ) ) |
| 71 | 70 | ex | |- ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) |
| 72 | simplr | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = 1o ) |
|
| 73 | simpr | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) |
|
| 74 | 72 73 | mpbid | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( c ` w ) = 1o ) |
| 75 | 72 74 | eqtr4d | |- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = ( c ` w ) ) |
| 76 | 75 | ex | |- ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) |
| 77 | elpri | |- ( ( b ` w ) e. { (/) , 1o } -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) |
|
| 78 | 77 16 | eleq2s | |- ( ( b ` w ) e. 2o -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) |
| 79 | 78 | adantr | |- ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) |
| 80 | 71 76 79 | mpjaodan | |- ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) |
| 81 | 56 80 | impbid2 | |- ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( b ` w ) = ( c ` w ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) |
| 82 | 54 55 81 | syl2anc | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( b ` w ) = ( c ` w ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) |
| 83 | simplrl | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> b e. ( 2o ^m A ) ) |
|
| 84 | 3 | pw2f1o2val2 | |- ( ( b e. ( 2o ^m A ) /\ w e. A ) -> ( w e. ( F ` b ) <-> ( b ` w ) = 1o ) ) |
| 85 | 83 84 | sylancom | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( w e. ( F ` b ) <-> ( b ` w ) = 1o ) ) |
| 86 | simplrr | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> c e. ( 2o ^m A ) ) |
|
| 87 | 3 | pw2f1o2val2 | |- ( ( c e. ( 2o ^m A ) /\ w e. A ) -> ( w e. ( F ` c ) <-> ( c ` w ) = 1o ) ) |
| 88 | 86 87 | sylancom | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( w e. ( F ` c ) <-> ( c ` w ) = 1o ) ) |
| 89 | 85 88 | bibi12d | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( w e. ( F ` b ) <-> w e. ( F ` c ) ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) |
| 90 | 82 89 | bitr4d | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( b ` w ) = ( c ` w ) <-> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) |
| 91 | 90 | imbi2d | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( w R z -> ( b ` w ) = ( c ` w ) ) <-> ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
| 92 | 91 | ralbidva | |- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
| 93 | 92 | adantr | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
| 94 | 53 93 | anbi12d | |- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) <-> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) |
| 95 | 94 | rexbidva | |- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) |
| 96 | vex | |- b e. _V |
|
| 97 | vex | |- c e. _V |
|
| 98 | fveq1 | |- ( x = b -> ( x ` z ) = ( b ` z ) ) |
|
| 99 | fveq1 | |- ( y = c -> ( y ` z ) = ( c ` z ) ) |
|
| 100 | 98 99 | breqan12d | |- ( ( x = b /\ y = c ) -> ( ( x ` z ) _E ( y ` z ) <-> ( b ` z ) _E ( c ` z ) ) ) |
| 101 | fveq1 | |- ( x = b -> ( x ` w ) = ( b ` w ) ) |
|
| 102 | fveq1 | |- ( y = c -> ( y ` w ) = ( c ` w ) ) |
|
| 103 | 101 102 | eqeqan12d | |- ( ( x = b /\ y = c ) -> ( ( x ` w ) = ( y ` w ) <-> ( b ` w ) = ( c ` w ) ) ) |
| 104 | 103 | imbi2d | |- ( ( x = b /\ y = c ) -> ( ( w R z -> ( x ` w ) = ( y ` w ) ) <-> ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) |
| 105 | 104 | ralbidv | |- ( ( x = b /\ y = c ) -> ( A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) <-> A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) |
| 106 | 100 105 | anbi12d | |- ( ( x = b /\ y = c ) -> ( ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) ) |
| 107 | 106 | rexbidv | |- ( ( x = b /\ y = c ) -> ( E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) ) |
| 108 | 96 97 107 2 | braba | |- ( b U c <-> E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) |
| 109 | fvex | |- ( F ` b ) e. _V |
|
| 110 | fvex | |- ( F ` c ) e. _V |
|
| 111 | eleq2 | |- ( y = ( F ` c ) -> ( z e. y <-> z e. ( F ` c ) ) ) |
|
| 112 | eleq2 | |- ( x = ( F ` b ) -> ( z e. x <-> z e. ( F ` b ) ) ) |
|
| 113 | 112 | notbid | |- ( x = ( F ` b ) -> ( -. z e. x <-> -. z e. ( F ` b ) ) ) |
| 114 | 111 113 | bi2anan9r | |- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( z e. y /\ -. z e. x ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) |
| 115 | eleq2 | |- ( x = ( F ` b ) -> ( w e. x <-> w e. ( F ` b ) ) ) |
|
| 116 | eleq2 | |- ( y = ( F ` c ) -> ( w e. y <-> w e. ( F ` c ) ) ) |
|
| 117 | 115 116 | bi2bian9 | |- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( w e. x <-> w e. y ) <-> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) |
| 118 | 117 | imbi2d | |- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( w R z -> ( w e. x <-> w e. y ) ) <-> ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
| 119 | 118 | ralbidv | |- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
| 120 | 114 119 | anbi12d | |- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) <-> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) |
| 121 | 120 | rexbidv | |- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) |
| 122 | 109 110 121 1 | braba | |- ( ( F ` b ) T ( F ` c ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
| 123 | 95 108 122 | 3bitr4g | |- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( b U c <-> ( F ` b ) T ( F ` c ) ) ) |
| 124 | 123 | ralrimivva | |- ( A e. _V -> A. b e. ( 2o ^m A ) A. c e. ( 2o ^m A ) ( b U c <-> ( F ` b ) T ( F ` c ) ) ) |
| 125 | df-isom | |- ( F Isom U , T ( ( 2o ^m A ) , ~P A ) <-> ( F : ( 2o ^m A ) -1-1-onto-> ~P A /\ A. b e. ( 2o ^m A ) A. c e. ( 2o ^m A ) ( b U c <-> ( F ` b ) T ( F ` c ) ) ) ) |
|
| 126 | 4 124 125 | sylanbrc | |- ( A e. _V -> F Isom U , T ( ( 2o ^m A ) , ~P A ) ) |