This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a mapped set under the pw2f1o2 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pw2f1o2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) | |
| Assertion | pw2f1o2val2 | ⊢ ( ( 𝑋 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ‘ 𝑌 ) = 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) | |
| 2 | 1 | pw2f1o2val | ⊢ ( 𝑋 ∈ ( 2o ↑m 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( ◡ 𝑋 “ { 1o } ) ) |
| 3 | 2 | eleq2d | ⊢ ( 𝑋 ∈ ( 2o ↑m 𝐴 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑋 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ) ) |
| 5 | elmapi | ⊢ ( 𝑋 ∈ ( 2o ↑m 𝐴 ) → 𝑋 : 𝐴 ⟶ 2o ) | |
| 6 | ffn | ⊢ ( 𝑋 : 𝐴 ⟶ 2o → 𝑋 Fn 𝐴 ) | |
| 7 | fniniseg | ⊢ ( 𝑋 Fn 𝐴 → ( 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ↔ ( 𝑌 ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑌 ) = 1o ) ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝑋 ∈ ( 2o ↑m 𝐴 ) → ( 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ↔ ( 𝑌 ∈ 𝐴 ∧ ( 𝑋 ‘ 𝑌 ) = 1o ) ) ) |
| 9 | 8 | baibd | ⊢ ( ( 𝑋 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ ( ◡ 𝑋 “ { 1o } ) ↔ ( 𝑋 ‘ 𝑌 ) = 1o ) ) |
| 10 | 4 9 | bitrd | ⊢ ( ( 𝑋 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ‘ 𝑌 ) = 1o ) ) |