This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-ordering induces a strict ordering on the power set.EDITORIAL: when well-orderings are set like, this can be strengthened to remove A e. V . (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wepwso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ) } | |
| Assertion | wepwso | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → 𝑇 Or 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wepwso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) ) } | |
| 2 | 2onn | ⊢ 2o ∈ ω | |
| 3 | nnord | ⊢ ( 2o ∈ ω → Ord 2o ) | |
| 4 | 2 3 | ax-mp | ⊢ Ord 2o |
| 5 | ordwe | ⊢ ( Ord 2o → E We 2o ) | |
| 6 | weso | ⊢ ( E We 2o → E Or 2o ) | |
| 7 | 4 5 6 | mp2b | ⊢ E Or 2o |
| 8 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 9 | 8 | wemapso | ⊢ ( ( 𝑅 We 𝐴 ∧ E Or 2o ) → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ) |
| 10 | 7 9 | mpan2 | ⊢ ( 𝑅 We 𝐴 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ) |
| 12 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 13 | eqid | ⊢ ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) = ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) | |
| 14 | 1 8 13 | wepwsolem | ⊢ ( 𝐴 ∈ V → ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) Isom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } , 𝑇 ( ( 2o ↑m 𝐴 ) , 𝒫 𝐴 ) ) |
| 15 | isoso | ⊢ ( ( 𝑎 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑎 “ { 1o } ) ) Isom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } , 𝑇 ( ( 2o ↑m 𝐴 ) , 𝒫 𝐴 ) → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) ) | |
| 16 | 12 14 15 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → ( { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) E ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } Or ( 2o ↑m 𝐴 ) ↔ 𝑇 Or 𝒫 𝐴 ) ) |
| 18 | 11 17 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ) → 𝑇 Or 𝒫 𝐴 ) |