This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wemapso . (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015) (Revised by AV, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| wemapsolem.1 | ⊢ 𝑈 ⊆ ( 𝐵 ↑m 𝐴 ) | ||
| wemapsolem.2 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | ||
| wemapsolem.3 | ⊢ ( 𝜑 → 𝑆 Or 𝐵 ) | ||
| wemapsolem.4 | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ∃ 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ) | ||
| Assertion | wemapsolem | ⊢ ( 𝜑 → 𝑇 Or 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 2 | wemapsolem.1 | ⊢ 𝑈 ⊆ ( 𝐵 ↑m 𝐴 ) | |
| 3 | wemapsolem.2 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 4 | wemapsolem.3 | ⊢ ( 𝜑 → 𝑆 Or 𝐵 ) | |
| 5 | wemapsolem.4 | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ∃ 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ) | |
| 6 | sopo | ⊢ ( 𝑆 Or 𝐵 → 𝑆 Po 𝐵 ) | |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → 𝑆 Po 𝐵 ) |
| 8 | 1 | wemappo | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵 ) → 𝑇 Po ( 𝐵 ↑m 𝐴 ) ) |
| 9 | 3 7 8 | syl2anc | ⊢ ( 𝜑 → 𝑇 Po ( 𝐵 ↑m 𝐴 ) ) |
| 10 | poss | ⊢ ( 𝑈 ⊆ ( 𝐵 ↑m 𝐴 ) → ( 𝑇 Po ( 𝐵 ↑m 𝐴 ) → 𝑇 Po 𝑈 ) ) | |
| 11 | 2 9 10 | mpsyl | ⊢ ( 𝜑 → 𝑇 Po 𝑈 ) |
| 12 | df-ne | ⊢ ( 𝑎 ≠ 𝑏 ↔ ¬ 𝑎 = 𝑏 ) | |
| 13 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 ∈ 𝑈 ) | |
| 14 | 2 13 | sselid | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 15 | elmapi | ⊢ ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑎 : 𝐴 ⟶ 𝐵 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 : 𝐴 ⟶ 𝐵 ) |
| 17 | 16 | ffnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 Fn 𝐴 ) |
| 18 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 ∈ 𝑈 ) | |
| 19 | 2 18 | sselid | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 20 | elmapi | ⊢ ( 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑏 : 𝐴 ⟶ 𝐵 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 : 𝐴 ⟶ 𝐵 ) |
| 22 | 21 | ffnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 Fn 𝐴 ) |
| 23 | fndmdif | ⊢ ( ( 𝑎 Fn 𝐴 ∧ 𝑏 Fn 𝐴 ) → dom ( 𝑎 ∖ 𝑏 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) } ) | |
| 24 | 17 22 23 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → dom ( 𝑎 ∖ 𝑏 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) } ) |
| 25 | 24 | eleq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ↔ 𝑐 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) } ) ) |
| 26 | nesym | ⊢ ( ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) ↔ ¬ ( 𝑏 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑐 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑐 ) ) | |
| 28 | fveq2 | ⊢ ( 𝑥 = 𝑐 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑐 ) ) | |
| 29 | 27 28 | eqeq12d | ⊢ ( 𝑥 = 𝑐 → ( ( 𝑏 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ↔ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ) ) |
| 30 | 29 | notbid | ⊢ ( 𝑥 = 𝑐 → ( ¬ ( 𝑏 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ↔ ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ) ) |
| 31 | 26 30 | bitrid | ⊢ ( 𝑥 = 𝑐 → ( ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) ↔ ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ) ) |
| 32 | 31 | elrab | ⊢ ( 𝑐 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) } ↔ ( 𝑐 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ) ) |
| 33 | 25 32 | bitrdi | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ↔ ( 𝑐 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ) ) ) |
| 34 | 24 | eleq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ↔ 𝑑 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) } ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = 𝑑 → ( 𝑏 ‘ 𝑥 ) = ( 𝑏 ‘ 𝑑 ) ) | |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝑑 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑑 ) ) | |
| 37 | 35 36 | eqeq12d | ⊢ ( 𝑥 = 𝑑 → ( ( 𝑏 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ↔ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) |
| 38 | 37 | notbid | ⊢ ( 𝑥 = 𝑑 → ( ¬ ( 𝑏 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑥 ) ↔ ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) |
| 39 | 26 38 | bitrid | ⊢ ( 𝑥 = 𝑑 → ( ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) ↔ ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) |
| 40 | 39 | elrab | ⊢ ( 𝑑 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝑎 ‘ 𝑥 ) ≠ ( 𝑏 ‘ 𝑥 ) } ↔ ( 𝑑 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) |
| 41 | 34 40 | bitrdi | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ↔ ( 𝑑 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 42 | 41 | imbi1d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( ( 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) → ¬ 𝑑 𝑅 𝑐 ) ↔ ( ( 𝑑 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) → ¬ 𝑑 𝑅 𝑐 ) ) ) |
| 43 | impexp | ⊢ ( ( ( 𝑑 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) → ¬ 𝑑 𝑅 𝑐 ) ↔ ( 𝑑 ∈ 𝐴 → ( ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) → ¬ 𝑑 𝑅 𝑐 ) ) ) | |
| 44 | con34b | ⊢ ( ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ↔ ( ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) → ¬ 𝑑 𝑅 𝑐 ) ) | |
| 45 | 44 | imbi2i | ⊢ ( ( 𝑑 ∈ 𝐴 → ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ↔ ( 𝑑 ∈ 𝐴 → ( ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) → ¬ 𝑑 𝑅 𝑐 ) ) ) |
| 46 | 43 45 | bitr4i | ⊢ ( ( ( 𝑑 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) → ¬ 𝑑 𝑅 𝑐 ) ↔ ( 𝑑 ∈ 𝐴 → ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 47 | 42 46 | bitrdi | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( ( 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) → ¬ 𝑑 𝑅 𝑐 ) ↔ ( 𝑑 ∈ 𝐴 → ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) |
| 48 | 47 | ralbidv2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ↔ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 49 | 33 48 | anbi12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( ( 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∧ ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ) ↔ ( ( 𝑐 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) |
| 50 | anass | ⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ↔ ( 𝑐 ∈ 𝐴 ∧ ( ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) | |
| 51 | 49 50 | bitrdi | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( ( 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∧ ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ) ↔ ( 𝑐 ∈ 𝐴 ∧ ( ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) ) |
| 52 | 51 | rexbidv2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( ∃ 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ↔ ∃ 𝑐 ∈ 𝐴 ( ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) |
| 53 | 5 52 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ∃ 𝑐 ∈ 𝐴 ( ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 54 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) ∧ 𝑐 ∈ 𝐴 ) → 𝑆 Or 𝐵 ) |
| 55 | 21 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) ∧ 𝑐 ∈ 𝐴 ) → ( 𝑏 ‘ 𝑐 ) ∈ 𝐵 ) |
| 56 | 16 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) ∧ 𝑐 ∈ 𝐴 ) → ( 𝑎 ‘ 𝑐 ) ∈ 𝐵 ) |
| 57 | sotrieq | ⊢ ( ( 𝑆 Or 𝐵 ∧ ( ( 𝑏 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝑎 ‘ 𝑐 ) ∈ 𝐵 ) ) → ( ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ↔ ¬ ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ) ) | |
| 58 | 57 | con2bid | ⊢ ( ( 𝑆 Or 𝐵 ∧ ( ( 𝑏 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝑎 ‘ 𝑐 ) ∈ 𝐵 ) ) → ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ↔ ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ) ) |
| 59 | 58 | biimprd | ⊢ ( ( 𝑆 Or 𝐵 ∧ ( ( 𝑏 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝑎 ‘ 𝑐 ) ∈ 𝐵 ) ) → ( ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) → ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ) ) |
| 60 | 54 55 56 59 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) ∧ 𝑐 ∈ 𝐴 ) → ( ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) → ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ) ) |
| 61 | 60 | anim1d | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) ∧ 𝑐 ∈ 𝐴 ) → ( ( ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) → ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) |
| 62 | 61 | reximdva | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( ∃ 𝑐 ∈ 𝐴 ( ¬ ( 𝑏 ‘ 𝑐 ) = ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) → ∃ 𝑐 ∈ 𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) |
| 63 | 53 62 | mpd | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ∃ 𝑐 ∈ 𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 64 | 1 | wemaplem1 | ⊢ ( ( 𝑏 ∈ V ∧ 𝑎 ∈ V ) → ( 𝑏 𝑇 𝑎 ↔ ∃ 𝑐 ∈ 𝐴 ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) |
| 65 | 64 | el2v | ⊢ ( 𝑏 𝑇 𝑎 ↔ ∃ 𝑐 ∈ 𝐴 ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 66 | 1 | wemaplem1 | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( 𝑎 𝑇 𝑏 ↔ ∃ 𝑐 ∈ 𝐴 ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) ) |
| 67 | 66 | el2v | ⊢ ( 𝑎 𝑇 𝑏 ↔ ∃ 𝑐 ∈ 𝐴 ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) |
| 68 | 65 67 | orbi12i | ⊢ ( ( 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ↔ ( ∃ 𝑐 ∈ 𝐴 ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ∨ ∃ 𝑐 ∈ 𝐴 ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) ) |
| 69 | r19.43 | ⊢ ( ∃ 𝑐 ∈ 𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ∨ ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) ↔ ( ∃ 𝑐 ∈ 𝐴 ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ∨ ∃ 𝑐 ∈ 𝐴 ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) ) | |
| 70 | andir | ⊢ ( ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ↔ ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ∨ ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ) | |
| 71 | eqcom | ⊢ ( ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ↔ ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) | |
| 72 | 71 | imbi2i | ⊢ ( ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ↔ ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) |
| 73 | 72 | ralbii | ⊢ ( ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ↔ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) |
| 74 | 73 | anbi2i | ⊢ ( ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ↔ ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) |
| 75 | 74 | orbi2i | ⊢ ( ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ∨ ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) ↔ ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ∨ ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) ) |
| 76 | 70 75 | bitr2i | ⊢ ( ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ∨ ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) ↔ ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 77 | 76 | rexbii | ⊢ ( ∃ 𝑐 ∈ 𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ∨ ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑎 ‘ 𝑑 ) = ( 𝑏 ‘ 𝑑 ) ) ) ) ↔ ∃ 𝑐 ∈ 𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 78 | 68 69 77 | 3bitr2i | ⊢ ( ( 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ↔ ∃ 𝑐 ∈ 𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 ) ∨ ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ∧ ∀ 𝑑 ∈ 𝐴 ( 𝑑 𝑅 𝑐 → ( 𝑏 ‘ 𝑑 ) = ( 𝑎 ‘ 𝑑 ) ) ) ) |
| 79 | 63 78 | sylibr | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ∧ 𝑎 ≠ 𝑏 ) ) → ( 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ) |
| 80 | 79 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑎 ≠ 𝑏 → ( 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ) ) |
| 81 | 12 80 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ¬ 𝑎 = 𝑏 → ( 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ) ) |
| 82 | 81 | orrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑎 = 𝑏 ∨ ( 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ) ) |
| 83 | 3orrot | ⊢ ( ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ↔ ( 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ) | |
| 84 | 3orass | ⊢ ( ( 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ↔ ( 𝑎 = 𝑏 ∨ ( 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ) ) | |
| 85 | 83 84 | bitr2i | ⊢ ( ( 𝑎 = 𝑏 ∨ ( 𝑏 𝑇 𝑎 ∨ 𝑎 𝑇 𝑏 ) ) ↔ ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 86 | 82 85 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑎 𝑇 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑇 𝑎 ) ) |
| 87 | 11 86 | issod | ⊢ ( 𝜑 → 𝑇 Or 𝑈 ) |