This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wemapso . (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015) (Revised by AV, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| wemapsolem.1 | |- U C_ ( B ^m A ) |
||
| wemapsolem.2 | |- ( ph -> R Or A ) |
||
| wemapsolem.3 | |- ( ph -> S Or B ) |
||
| wemapsolem.4 | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
||
| Assertion | wemapsolem | |- ( ph -> T Or U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 2 | wemapsolem.1 | |- U C_ ( B ^m A ) |
|
| 3 | wemapsolem.2 | |- ( ph -> R Or A ) |
|
| 4 | wemapsolem.3 | |- ( ph -> S Or B ) |
|
| 5 | wemapsolem.4 | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
|
| 6 | sopo | |- ( S Or B -> S Po B ) |
|
| 7 | 4 6 | syl | |- ( ph -> S Po B ) |
| 8 | 1 | wemappo | |- ( ( R Or A /\ S Po B ) -> T Po ( B ^m A ) ) |
| 9 | 3 7 8 | syl2anc | |- ( ph -> T Po ( B ^m A ) ) |
| 10 | poss | |- ( U C_ ( B ^m A ) -> ( T Po ( B ^m A ) -> T Po U ) ) |
|
| 11 | 2 9 10 | mpsyl | |- ( ph -> T Po U ) |
| 12 | df-ne | |- ( a =/= b <-> -. a = b ) |
|
| 13 | simprll | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. U ) |
|
| 14 | 2 13 | sselid | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) |
| 15 | elmapi | |- ( a e. ( B ^m A ) -> a : A --> B ) |
|
| 16 | 14 15 | syl | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a : A --> B ) |
| 17 | 16 | ffnd | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a Fn A ) |
| 18 | simprlr | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. U ) |
|
| 19 | 2 18 | sselid | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) |
| 20 | elmapi | |- ( b e. ( B ^m A ) -> b : A --> B ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b : A --> B ) |
| 22 | 21 | ffnd | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b Fn A ) |
| 23 | fndmdif | |- ( ( a Fn A /\ b Fn A ) -> dom ( a \ b ) = { x e. A | ( a ` x ) =/= ( b ` x ) } ) |
|
| 24 | 17 22 23 | syl2anc | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) = { x e. A | ( a ` x ) =/= ( b ` x ) } ) |
| 25 | 24 | eleq2d | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( c e. dom ( a \ b ) <-> c e. { x e. A | ( a ` x ) =/= ( b ` x ) } ) ) |
| 26 | nesym | |- ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` x ) = ( a ` x ) ) |
|
| 27 | fveq2 | |- ( x = c -> ( b ` x ) = ( b ` c ) ) |
|
| 28 | fveq2 | |- ( x = c -> ( a ` x ) = ( a ` c ) ) |
|
| 29 | 27 28 | eqeq12d | |- ( x = c -> ( ( b ` x ) = ( a ` x ) <-> ( b ` c ) = ( a ` c ) ) ) |
| 30 | 29 | notbid | |- ( x = c -> ( -. ( b ` x ) = ( a ` x ) <-> -. ( b ` c ) = ( a ` c ) ) ) |
| 31 | 26 30 | bitrid | |- ( x = c -> ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` c ) = ( a ` c ) ) ) |
| 32 | 31 | elrab | |- ( c e. { x e. A | ( a ` x ) =/= ( b ` x ) } <-> ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) ) |
| 33 | 25 32 | bitrdi | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( c e. dom ( a \ b ) <-> ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) ) ) |
| 34 | 24 | eleq2d | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( d e. dom ( a \ b ) <-> d e. { x e. A | ( a ` x ) =/= ( b ` x ) } ) ) |
| 35 | fveq2 | |- ( x = d -> ( b ` x ) = ( b ` d ) ) |
|
| 36 | fveq2 | |- ( x = d -> ( a ` x ) = ( a ` d ) ) |
|
| 37 | 35 36 | eqeq12d | |- ( x = d -> ( ( b ` x ) = ( a ` x ) <-> ( b ` d ) = ( a ` d ) ) ) |
| 38 | 37 | notbid | |- ( x = d -> ( -. ( b ` x ) = ( a ` x ) <-> -. ( b ` d ) = ( a ` d ) ) ) |
| 39 | 26 38 | bitrid | |- ( x = d -> ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` d ) = ( a ` d ) ) ) |
| 40 | 39 | elrab | |- ( d e. { x e. A | ( a ` x ) =/= ( b ` x ) } <-> ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) ) |
| 41 | 34 40 | bitrdi | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( d e. dom ( a \ b ) <-> ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) ) ) |
| 42 | 41 | imbi1d | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( d e. dom ( a \ b ) -> -. d R c ) <-> ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) ) ) |
| 43 | impexp | |- ( ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) <-> ( d e. A -> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) ) |
|
| 44 | con34b | |- ( ( d R c -> ( b ` d ) = ( a ` d ) ) <-> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) |
|
| 45 | 44 | imbi2i | |- ( ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( d e. A -> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) ) |
| 46 | 43 45 | bitr4i | |- ( ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) <-> ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
| 47 | 42 46 | bitrdi | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( d e. dom ( a \ b ) -> -. d R c ) <-> ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
| 48 | 47 | ralbidv2 | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( A. d e. dom ( a \ b ) -. d R c <-> A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
| 49 | 33 48 | anbi12d | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( c e. dom ( a \ b ) /\ A. d e. dom ( a \ b ) -. d R c ) <-> ( ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
| 50 | anass | |- ( ( ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( c e. A /\ ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
|
| 51 | 49 50 | bitrdi | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( c e. dom ( a \ b ) /\ A. d e. dom ( a \ b ) -. d R c ) <-> ( c e. A /\ ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) ) |
| 52 | 51 | rexbidv2 | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c <-> E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
| 53 | 5 52 | mpbid | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
| 54 | 4 | ad2antrr | |- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> S Or B ) |
| 55 | 21 | ffvelcdmda | |- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( b ` c ) e. B ) |
| 56 | 16 | ffvelcdmda | |- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( a ` c ) e. B ) |
| 57 | sotrieq | |- ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( ( b ` c ) = ( a ` c ) <-> -. ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) |
|
| 58 | 57 | con2bid | |- ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) <-> -. ( b ` c ) = ( a ` c ) ) ) |
| 59 | 58 | biimprd | |- ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( -. ( b ` c ) = ( a ` c ) -> ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) |
| 60 | 54 55 56 59 | syl12anc | |- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( -. ( b ` c ) = ( a ` c ) -> ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) |
| 61 | 60 | anim1d | |- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) -> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
| 62 | 61 | reximdva | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) -> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
| 63 | 53 62 | mpd | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
| 64 | 1 | wemaplem1 | |- ( ( b e. _V /\ a e. _V ) -> ( b T a <-> E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
| 65 | 64 | el2v | |- ( b T a <-> E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
| 66 | 1 | wemaplem1 | |- ( ( a e. _V /\ b e. _V ) -> ( a T b <-> E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) |
| 67 | 66 | el2v | |- ( a T b <-> E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) |
| 68 | 65 67 | orbi12i | |- ( ( b T a \/ a T b ) <-> ( E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) |
| 69 | r19.43 | |- ( E. c e. A ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> ( E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) |
|
| 70 | andir | |- ( ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
|
| 71 | eqcom | |- ( ( b ` d ) = ( a ` d ) <-> ( a ` d ) = ( b ` d ) ) |
|
| 72 | 71 | imbi2i | |- ( ( d R c -> ( b ` d ) = ( a ` d ) ) <-> ( d R c -> ( a ` d ) = ( b ` d ) ) ) |
| 73 | 72 | ralbii | |- ( A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) <-> A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) |
| 74 | 73 | anbi2i | |- ( ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) |
| 75 | 74 | orbi2i | |- ( ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) |
| 76 | 70 75 | bitr2i | |- ( ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
| 77 | 76 | rexbii | |- ( E. c e. A ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
| 78 | 68 69 77 | 3bitr2i | |- ( ( b T a \/ a T b ) <-> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
| 79 | 63 78 | sylibr | |- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( b T a \/ a T b ) ) |
| 80 | 79 | expr | |- ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a =/= b -> ( b T a \/ a T b ) ) ) |
| 81 | 12 80 | biimtrrid | |- ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( -. a = b -> ( b T a \/ a T b ) ) ) |
| 82 | 81 | orrd | |- ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a = b \/ ( b T a \/ a T b ) ) ) |
| 83 | 3orrot | |- ( ( a T b \/ a = b \/ b T a ) <-> ( a = b \/ b T a \/ a T b ) ) |
|
| 84 | 3orass | |- ( ( a = b \/ b T a \/ a T b ) <-> ( a = b \/ ( b T a \/ a T b ) ) ) |
|
| 85 | 83 84 | bitr2i | |- ( ( a = b \/ ( b T a \/ a T b ) ) <-> ( a T b \/ a = b \/ b T a ) ) |
| 86 | 82 85 | sylib | |- ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a T b \/ a = b \/ b T a ) ) |
| 87 | 11 86 | issod | |- ( ph -> T Or U ) |