This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issod.1 | ⊢ ( 𝜑 → 𝑅 Po 𝐴 ) | |
| issod.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) | ||
| Assertion | issod | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issod.1 | ⊢ ( 𝜑 → 𝑅 Po 𝐴 ) | |
| 2 | issod.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) | |
| 3 | 2 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 4 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 5 | 1 3 4 | sylanbrc | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |