This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotrieq | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sonr | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 𝑅 𝐵 ) | |
| 2 | 1 | adantrr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ¬ 𝐵 𝑅 𝐵 ) |
| 3 | pm1.2 | ⊢ ( ( 𝐵 𝑅 𝐵 ∨ 𝐵 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) | |
| 4 | 2 3 | nsyl | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐵 ∨ 𝐵 𝑅 𝐵 ) ) |
| 5 | breq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐵 𝑅 𝐵 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 6 | breq1 | ⊢ ( 𝐵 = 𝐶 → ( 𝐵 𝑅 𝐵 ↔ 𝐶 𝑅 𝐵 ) ) | |
| 7 | 5 6 | orbi12d | ⊢ ( 𝐵 = 𝐶 → ( ( 𝐵 𝑅 𝐵 ∨ 𝐵 𝑅 𝐵 ) ↔ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 8 | 7 | notbid | ⊢ ( 𝐵 = 𝐶 → ( ¬ ( 𝐵 𝑅 𝐵 ∨ 𝐵 𝑅 𝐵 ) ↔ ¬ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 9 | 4 8 | syl5ibcom | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 → ¬ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 10 | 9 | con2d | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) → ¬ 𝐵 = 𝐶 ) ) |
| 11 | solin | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) | |
| 12 | 3orass | ⊢ ( ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ↔ ( 𝐵 𝑅 𝐶 ∨ ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ∨ ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 14 | or12 | ⊢ ( ( 𝐵 𝑅 𝐶 ∨ ( 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ↔ ( 𝐵 = 𝐶 ∨ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ∨ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 16 | 15 | ord | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ¬ 𝐵 = 𝐶 → ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 17 | 10 16 | impbid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ↔ ¬ 𝐵 = 𝐶 ) ) |
| 18 | 17 | con2bid | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 𝑅 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |