This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.43 . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.43 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ¬ 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 2 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ¬ 𝜑 → 𝜓 ) ) |
| 4 | df-or | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ¬ ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 5 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 6 | 5 | imbi1i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ¬ ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 7 | 4 6 | bitr4i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 8 | 1 3 7 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |