This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in Diestel p. 5. See also remark about equation (2) in section I.1 in Bollobas p. 4. (Contributed by AV, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdgeven.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| finsumvtxdgeven.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| finsumvtxdgeven.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxdgoddnumeven | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdgeven.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | finsumvtxdgeven.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | finsumvtxdgeven.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | 1 2 3 | finsumvtxdgeven | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ Σ 𝑤 ∈ 𝑉 ( 𝐷 ‘ 𝑤 ) ) |
| 5 | incom | ⊢ ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) = ( { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) | |
| 6 | rabnc | ⊢ ( { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) = ∅ | |
| 7 | 5 6 | eqtri | ⊢ ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) = ∅ |
| 8 | 7 | a1i | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) = ∅ ) |
| 9 | rabxm | ⊢ 𝑉 = ( { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∪ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) | |
| 10 | 9 | equncomi | ⊢ 𝑉 = ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∪ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) |
| 11 | 10 | a1i | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 𝑉 = ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∪ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) |
| 12 | simp2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 𝑉 ∈ Fin ) | |
| 13 | 3 | fveq1i | ⊢ ( 𝐷 ‘ 𝑤 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) |
| 14 | dmfi | ⊢ ( 𝐼 ∈ Fin → dom 𝐼 ∈ Fin ) | |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → dom 𝐼 ∈ Fin ) |
| 16 | eqid | ⊢ dom 𝐼 = dom 𝐼 | |
| 17 | 1 2 16 | vtxdgfisnn0 | ⊢ ( ( dom 𝐼 ∈ Fin ∧ 𝑤 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℕ0 ) |
| 18 | 15 17 | sylan | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℕ0 ) |
| 19 | 18 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℂ ) |
| 20 | 13 19 | eqeltrid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑤 ) ∈ ℂ ) |
| 21 | 8 11 12 20 | fsumsplit | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑤 ∈ 𝑉 ( 𝐷 ‘ 𝑤 ) = ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 22 | 21 | breq2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 ∥ Σ 𝑤 ∈ 𝑉 ( 𝐷 ‘ 𝑤 ) ↔ 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) ) |
| 23 | rabfi | ⊢ ( 𝑉 ∈ Fin → { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∈ Fin ) | |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∈ Fin ) |
| 25 | elrabi | ⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } → 𝑤 ∈ 𝑉 ) | |
| 26 | 15 25 17 | syl2an | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℕ0 ) |
| 27 | 26 | nn0zd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℤ ) |
| 28 | 13 27 | eqeltrid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 29 | 24 28 | fsumzcl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 31 | fveq2 | ⊢ ( 𝑣 = 𝑤 → ( 𝐷 ‘ 𝑣 ) = ( 𝐷 ‘ 𝑤 ) ) | |
| 32 | 31 | breq2d | ⊢ ( 𝑣 = 𝑤 → ( 2 ∥ ( 𝐷 ‘ 𝑣 ) ↔ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) ) |
| 33 | 32 | notbid | ⊢ ( 𝑣 = 𝑤 → ( ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) ↔ ¬ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) ) |
| 34 | 33 | elrab | ⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ↔ ( 𝑤 ∈ 𝑉 ∧ ¬ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) ) |
| 35 | 34 | simprbi | ⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } → ¬ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) |
| 36 | 35 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ¬ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) |
| 37 | 24 28 36 | sumodd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ↔ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 38 | 37 | notbid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ↔ ¬ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 39 | 38 | biimpa | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → ¬ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) |
| 40 | rabfi | ⊢ ( 𝑉 ∈ Fin → { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∈ Fin ) | |
| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∈ Fin ) |
| 42 | elrabi | ⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } → 𝑤 ∈ 𝑉 ) | |
| 43 | 15 42 17 | syl2an | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℕ0 ) |
| 44 | 43 | nn0zd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℤ ) |
| 45 | 13 44 | eqeltrid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 46 | 41 45 | fsumzcl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 48 | 32 | elrab | ⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ↔ ( 𝑤 ∈ 𝑉 ∧ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) ) |
| 49 | 48 | simprbi | ⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } → 2 ∥ ( 𝐷 ‘ 𝑤 ) ) |
| 50 | 49 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → 2 ∥ ( 𝐷 ‘ 𝑤 ) ) |
| 51 | 41 45 50 | sumeven | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) |
| 53 | opeo | ⊢ ( ( ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ∧ ¬ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ∧ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ∧ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) → ¬ 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) | |
| 54 | 30 39 47 52 53 | syl22anc | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → ¬ 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 55 | 54 | ex | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ¬ 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) ) |
| 56 | 55 | con4d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) ) |
| 57 | 22 56 | sylbid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 ∥ Σ 𝑤 ∈ 𝑉 ( 𝐷 ‘ 𝑤 ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) ) |
| 58 | 4 57 | mpd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) |