This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in Diestel p. 5. See also remark about equation (2) in section I.1 in Bollobas p. 4. (Contributed by AV, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdgeven.v | |- V = ( Vtx ` G ) |
|
| finsumvtxdgeven.i | |- I = ( iEdg ` G ) |
||
| finsumvtxdgeven.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxdgoddnumeven | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdgeven.v | |- V = ( Vtx ` G ) |
|
| 2 | finsumvtxdgeven.i | |- I = ( iEdg ` G ) |
|
| 3 | finsumvtxdgeven.d | |- D = ( VtxDeg ` G ) |
|
| 4 | 1 2 3 | finsumvtxdgeven | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || sum_ w e. V ( D ` w ) ) |
| 5 | incom | |- ( { v e. V | -. 2 || ( D ` v ) } i^i { v e. V | 2 || ( D ` v ) } ) = ( { v e. V | 2 || ( D ` v ) } i^i { v e. V | -. 2 || ( D ` v ) } ) |
|
| 6 | rabnc | |- ( { v e. V | 2 || ( D ` v ) } i^i { v e. V | -. 2 || ( D ` v ) } ) = (/) |
|
| 7 | 5 6 | eqtri | |- ( { v e. V | -. 2 || ( D ` v ) } i^i { v e. V | 2 || ( D ` v ) } ) = (/) |
| 8 | 7 | a1i | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( { v e. V | -. 2 || ( D ` v ) } i^i { v e. V | 2 || ( D ` v ) } ) = (/) ) |
| 9 | rabxm | |- V = ( { v e. V | 2 || ( D ` v ) } u. { v e. V | -. 2 || ( D ` v ) } ) |
|
| 10 | 9 | equncomi | |- V = ( { v e. V | -. 2 || ( D ` v ) } u. { v e. V | 2 || ( D ` v ) } ) |
| 11 | 10 | a1i | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> V = ( { v e. V | -. 2 || ( D ` v ) } u. { v e. V | 2 || ( D ` v ) } ) ) |
| 12 | simp2 | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> V e. Fin ) |
|
| 13 | 3 | fveq1i | |- ( D ` w ) = ( ( VtxDeg ` G ) ` w ) |
| 14 | dmfi | |- ( I e. Fin -> dom I e. Fin ) |
|
| 15 | 14 | 3ad2ant3 | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> dom I e. Fin ) |
| 16 | eqid | |- dom I = dom I |
|
| 17 | 1 2 16 | vtxdgfisnn0 | |- ( ( dom I e. Fin /\ w e. V ) -> ( ( VtxDeg ` G ) ` w ) e. NN0 ) |
| 18 | 15 17 | sylan | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. V ) -> ( ( VtxDeg ` G ) ` w ) e. NN0 ) |
| 19 | 18 | nn0cnd | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. V ) -> ( ( VtxDeg ` G ) ` w ) e. CC ) |
| 20 | 13 19 | eqeltrid | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. V ) -> ( D ` w ) e. CC ) |
| 21 | 8 11 12 20 | fsumsplit | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ w e. V ( D ` w ) = ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) |
| 22 | 21 | breq2d | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 || sum_ w e. V ( D ` w ) <-> 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) ) |
| 23 | rabfi | |- ( V e. Fin -> { v e. V | -. 2 || ( D ` v ) } e. Fin ) |
|
| 24 | 23 | 3ad2ant2 | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> { v e. V | -. 2 || ( D ` v ) } e. Fin ) |
| 25 | elrabi | |- ( w e. { v e. V | -. 2 || ( D ` v ) } -> w e. V ) |
|
| 26 | 15 25 17 | syl2an | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | -. 2 || ( D ` v ) } ) -> ( ( VtxDeg ` G ) ` w ) e. NN0 ) |
| 27 | 26 | nn0zd | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | -. 2 || ( D ` v ) } ) -> ( ( VtxDeg ` G ) ` w ) e. ZZ ) |
| 28 | 13 27 | eqeltrid | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | -. 2 || ( D ` v ) } ) -> ( D ` w ) e. ZZ ) |
| 29 | 24 28 | fsumzcl | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) e. ZZ ) |
| 30 | 29 | adantr | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) e. ZZ ) |
| 31 | fveq2 | |- ( v = w -> ( D ` v ) = ( D ` w ) ) |
|
| 32 | 31 | breq2d | |- ( v = w -> ( 2 || ( D ` v ) <-> 2 || ( D ` w ) ) ) |
| 33 | 32 | notbid | |- ( v = w -> ( -. 2 || ( D ` v ) <-> -. 2 || ( D ` w ) ) ) |
| 34 | 33 | elrab | |- ( w e. { v e. V | -. 2 || ( D ` v ) } <-> ( w e. V /\ -. 2 || ( D ` w ) ) ) |
| 35 | 34 | simprbi | |- ( w e. { v e. V | -. 2 || ( D ` v ) } -> -. 2 || ( D ` w ) ) |
| 36 | 35 | adantl | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | -. 2 || ( D ` v ) } ) -> -. 2 || ( D ` w ) ) |
| 37 | 24 28 36 | sumodd | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) <-> 2 || sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) ) ) |
| 38 | 37 | notbid | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) <-> -. 2 || sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) ) ) |
| 39 | 38 | biimpa | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> -. 2 || sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) ) |
| 40 | rabfi | |- ( V e. Fin -> { v e. V | 2 || ( D ` v ) } e. Fin ) |
|
| 41 | 40 | 3ad2ant2 | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> { v e. V | 2 || ( D ` v ) } e. Fin ) |
| 42 | elrabi | |- ( w e. { v e. V | 2 || ( D ` v ) } -> w e. V ) |
|
| 43 | 15 42 17 | syl2an | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | 2 || ( D ` v ) } ) -> ( ( VtxDeg ` G ) ` w ) e. NN0 ) |
| 44 | 43 | nn0zd | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | 2 || ( D ` v ) } ) -> ( ( VtxDeg ` G ) ` w ) e. ZZ ) |
| 45 | 13 44 | eqeltrid | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | 2 || ( D ` v ) } ) -> ( D ` w ) e. ZZ ) |
| 46 | 41 45 | fsumzcl | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) e. ZZ ) |
| 47 | 46 | adantr | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) e. ZZ ) |
| 48 | 32 | elrab | |- ( w e. { v e. V | 2 || ( D ` v ) } <-> ( w e. V /\ 2 || ( D ` w ) ) ) |
| 49 | 48 | simprbi | |- ( w e. { v e. V | 2 || ( D ` v ) } -> 2 || ( D ` w ) ) |
| 50 | 49 | adantl | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | 2 || ( D ` v ) } ) -> 2 || ( D ` w ) ) |
| 51 | 41 45 50 | sumeven | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) |
| 52 | 51 | adantr | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> 2 || sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) |
| 53 | opeo | |- ( ( ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) e. ZZ /\ -. 2 || sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) ) /\ ( sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) e. ZZ /\ 2 || sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) -> -. 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) |
|
| 54 | 30 39 47 52 53 | syl22anc | |- ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> -. 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) |
| 55 | 54 | ex | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) -> -. 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) ) |
| 56 | 55 | con4d | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) ) |
| 57 | 22 56 | sylbid | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 || sum_ w e. V ( D ` w ) -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) ) |
| 58 | 4 57 | mpd | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) |