This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is even. See equation (2) in section I.1 in Bollobas p. 4, where it is also called thehandshaking lemma. (Contributed by AV, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdgeven.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| finsumvtxdgeven.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| finsumvtxdgeven.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | finsumvtxdgeven | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ Σ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdgeven.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | finsumvtxdgeven.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | finsumvtxdgeven.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | hashcl | ⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) | |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 6 | 5 | nn0zd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 7 | eqidd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 · ( ♯ ‘ 𝐼 ) ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ) | |
| 8 | 2teven | ⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℤ ∧ ( 2 · ( ♯ ‘ 𝐼 ) ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ) → 2 ∥ ( 2 · ( ♯ ‘ 𝐼 ) ) ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ ( 2 · ( ♯ ‘ 𝐼 ) ) ) |
| 10 | 1 2 3 | finsumvtxdg2size | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ) |
| 11 | 9 10 | breqtrrd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ Σ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ) |