This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumeven.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| sumeven.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | ||
| sumodd.o | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 2 ∥ 𝐵 ) | ||
| Assertion | sumodd | ⊢ ( 𝜑 → ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeven.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | sumeven.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 3 | sumodd.o | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 2 ∥ 𝐵 ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) | |
| 5 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 7 | 6 | breq2d | ⊢ ( 𝑥 = ∅ → ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ 0 ) ) |
| 8 | sumeq1 | ⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 9 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 𝐵 = 0 ) |
| 11 | 10 | breq2d | ⊢ ( 𝑥 = ∅ → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ 0 ) ) |
| 12 | 7 11 | bibi12d | ⊢ ( 𝑥 = ∅ → ( ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ( 2 ∥ 0 ↔ 2 ∥ 0 ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) | |
| 14 | 13 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ ( ♯ ‘ 𝑦 ) ) ) |
| 15 | sumeq1 | ⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) | |
| 16 | 15 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 17 | 14 16 | bibi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 19 | 18 | breq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 20 | sumeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 21 | 20 | breq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 22 | 19 21 | bibi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ) |
| 23 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) | |
| 24 | 23 | breq2d | ⊢ ( 𝑥 = 𝐴 → ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ ( ♯ ‘ 𝐴 ) ) ) |
| 25 | sumeq1 | ⊢ ( 𝑥 = 𝐴 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) | |
| 26 | 25 | breq2d | ⊢ ( 𝑥 = 𝐴 → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 27 | 24 26 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 2 ∥ ( ♯ ‘ 𝑥 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) ) |
| 28 | biidd | ⊢ ( 𝜑 → ( 2 ∥ 0 ↔ 2 ∥ 0 ) ) | |
| 29 | eldifi | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑧 ∈ 𝐴 ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑧 ∈ 𝐴 ) |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 32 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 34 | rspcsbela | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) | |
| 35 | 31 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 36 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵 ) |
| 37 | nfcv | ⊢ Ⅎ 𝑘 2 | |
| 38 | nfcv | ⊢ Ⅎ 𝑘 ∥ | |
| 39 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 | |
| 40 | 37 38 39 | nfbr | ⊢ Ⅎ 𝑘 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 41 | 40 | nfn | ⊢ Ⅎ 𝑘 ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 42 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 43 | 42 | breq2d | ⊢ ( 𝑘 = 𝑧 → ( 2 ∥ 𝐵 ↔ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 44 | 43 | notbid | ⊢ ( 𝑘 = 𝑧 → ( ¬ 2 ∥ 𝐵 ↔ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 45 | 41 44 | rspc | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 46 | 29 45 | syl | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ( ∀ 𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 47 | 36 46 | syl5com | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 48 | 47 | a1d | ⊢ ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 49 | 48 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 50 | 35 49 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 52 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) | |
| 53 | 52 | expcom | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝐴 ∈ Fin → 𝑦 ∈ Fin ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝐴 ∈ Fin → 𝑦 ∈ Fin ) ) |
| 55 | 1 54 | syl5com | ⊢ ( 𝜑 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑦 ∈ Fin ) ) |
| 56 | 55 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
| 57 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) | |
| 58 | ssel | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) | |
| 59 | 58 | adantr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 60 | 59 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 61 | 60 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 62 | 57 61 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℤ ) |
| 63 | 56 62 | fsumzcl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
| 64 | 63 | anim1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 65 | opeo | ⊢ ( ( ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∧ ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) → ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) | |
| 66 | 51 64 65 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 67 | 63 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ) |
| 68 | 35 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 69 | addcom | ⊢ ( ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) = ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) | |
| 70 | 69 | breq2d | ⊢ ( ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 71 | 70 | notbid | ⊢ ( ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℂ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 72 | 67 68 71 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 + Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 74 | 66 73 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 75 | 74 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 → ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 76 | 63 | anim1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 77 | 50 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 78 | opoe | ⊢ ( ( ( Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ∧ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ∧ ¬ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) | |
| 79 | 76 77 78 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 80 | 79 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 81 | 80 | con1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) → 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 82 | 75 81 | impbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 83 | bitr3 | ⊢ ( ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → ( ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) | |
| 84 | 82 83 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
| 85 | bicom | ⊢ ( ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ↔ ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 86 | bicom | ⊢ ( ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ↔ ( ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 87 | 84 85 86 | 3imtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 88 | notnotb | ⊢ ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ ¬ ¬ 2 ∥ ( ♯ ‘ 𝑦 ) ) | |
| 89 | hashcl | ⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) | |
| 90 | 56 89 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 91 | 90 | nn0zd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ♯ ‘ 𝑦 ) ∈ ℤ ) |
| 92 | oddp1even | ⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℤ → ( ¬ 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 93 | 91 92 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 94 | 93 | notbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ¬ ¬ 2 ∥ ( ♯ ‘ 𝑦 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 95 | 88 94 | bitrid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 96 | 95 | bibi1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ↔ ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 97 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) | |
| 98 | eldifn | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 99 | 98 | adantl | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 100 | 99 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 101 | 56 100 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 102 | hashunsng | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 103 | 97 101 102 | sylc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 104 | 103 | breq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 105 | vex | ⊢ 𝑧 ∈ V | |
| 106 | 105 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ V ) |
| 107 | df-nel | ⊢ ( 𝑧 ∉ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 108 | 100 107 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∉ 𝑦 ) |
| 109 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝜑 ) | |
| 110 | elun | ⊢ ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) ) | |
| 111 | 59 | com12 | ⊢ ( 𝑘 ∈ 𝑦 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 112 | elsni | ⊢ ( 𝑘 ∈ { 𝑧 } → 𝑘 = 𝑧 ) | |
| 113 | eleq1w | ⊢ ( 𝑘 = 𝑧 → ( 𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 114 | 30 113 | imbitrrid | ⊢ ( 𝑘 = 𝑧 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 115 | 112 114 | syl | ⊢ ( 𝑘 ∈ { 𝑧 } → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 116 | 111 115 | jaoi | ⊢ ( ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 117 | 110 116 | sylbi | ⊢ ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 118 | 117 | com12 | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
| 119 | 118 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
| 120 | 119 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐴 ) |
| 121 | 109 120 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐵 ∈ ℤ ) |
| 122 | 121 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) |
| 123 | fsumsplitsnun | ⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑧 ∈ V ∧ 𝑧 ∉ 𝑦 ) ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) | |
| 124 | 56 106 108 122 123 | syl121anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 125 | 124 | breq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 126 | 104 125 | bibi12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↔ ( 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 127 | notbi | ⊢ ( ( 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ↔ ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 128 | 126 127 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ↔ ( ¬ 2 ∥ ( ( ♯ ‘ 𝑦 ) + 1 ) ↔ ¬ 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 129 | 87 96 128 | 3imtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( 2 ∥ ( ♯ ‘ 𝑦 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( 2 ∥ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ) |
| 130 | 12 17 22 27 28 129 1 | findcard2d | ⊢ ( 𝜑 → ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |