This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumeven.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| sumeven.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | ||
| sumeven.e | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 2 ∥ 𝐵 ) | ||
| Assertion | sumeven | ⊢ ( 𝜑 → 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeven.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | sumeven.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 3 | sumeven.e | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 2 ∥ 𝐵 ) | |
| 4 | sumeq1 | ⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 5 | 4 | breq2d | ⊢ ( 𝑥 = ∅ → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ ∅ 𝐵 ) ) |
| 6 | sumeq1 | ⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) | |
| 7 | 6 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 8 | sumeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 10 | sumeq1 | ⊢ ( 𝑥 = 𝐴 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑥 = 𝐴 → ( 2 ∥ Σ 𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 12 | z0even | ⊢ 2 ∥ 0 | |
| 13 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 14 | 12 13 | breqtrri | ⊢ 2 ∥ Σ 𝑘 ∈ ∅ 𝐵 |
| 15 | 14 | a1i | ⊢ ( 𝜑 → 2 ∥ Σ 𝑘 ∈ ∅ 𝐵 ) |
| 16 | 2z | ⊢ 2 ∈ ℤ | |
| 17 | 16 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 2 ∈ ℤ ) |
| 18 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) | |
| 19 | 18 | expcom | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝐴 ∈ Fin → 𝑦 ∈ Fin ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝐴 ∈ Fin → 𝑦 ∈ Fin ) ) |
| 21 | 1 20 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
| 22 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) | |
| 23 | ssel | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 26 | 25 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 27 | 22 26 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℤ ) |
| 28 | 21 27 | fsumzcl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
| 29 | eldifi | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑧 ∈ 𝐴 ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑧 ∈ 𝐴 ) |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 32 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 34 | rspcsbela | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) | |
| 35 | 31 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 36 | 17 28 35 | 3jca | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∈ ℤ ∧ Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( 2 ∈ ℤ ∧ Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
| 38 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 2 ∥ 𝐵 ) |
| 39 | nfcv | ⊢ Ⅎ 𝑘 2 | |
| 40 | nfcv | ⊢ Ⅎ 𝑘 ∥ | |
| 41 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 | |
| 42 | 39 40 41 | nfbr | ⊢ Ⅎ 𝑘 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 43 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 44 | 43 | breq2d | ⊢ ( 𝑘 = 𝑧 → ( 2 ∥ 𝐵 ↔ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 45 | 42 44 | rspc | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 2 ∥ 𝐵 → 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 46 | 29 38 45 | syl2imc | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 47 | 46 | a1d | ⊢ ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 48 | 47 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 49 | 48 | anim1ci | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ∧ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 50 | dvds2add | ⊢ ( ( 2 ∈ ℤ ∧ Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) → ( ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ∧ 2 ∥ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 51 | 37 49 50 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → 2 ∥ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 52 | vex | ⊢ 𝑧 ∈ V | |
| 53 | 52 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∈ V ) |
| 54 | eldif | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) | |
| 55 | df-nel | ⊢ ( 𝑧 ∉ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 56 | 55 | biimpri | ⊢ ( ¬ 𝑧 ∈ 𝑦 → 𝑧 ∉ 𝑦 ) |
| 57 | 54 56 | simplbiim | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑧 ∉ 𝑦 ) |
| 58 | 57 | adantl | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑧 ∉ 𝑦 ) |
| 59 | 58 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑧 ∉ 𝑦 ) |
| 60 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝜑 ) | |
| 61 | elun | ⊢ ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) ) | |
| 62 | 24 | com12 | ⊢ ( 𝑘 ∈ 𝑦 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 63 | elsni | ⊢ ( 𝑘 ∈ { 𝑧 } → 𝑘 = 𝑧 ) | |
| 64 | eleq1w | ⊢ ( 𝑘 = 𝑧 → ( 𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 65 | 30 64 | imbitrrid | ⊢ ( 𝑘 = 𝑧 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 66 | 63 65 | syl | ⊢ ( 𝑘 ∈ { 𝑧 } → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 67 | 62 66 | jaoi | ⊢ ( ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑘 ∈ 𝐴 ) ) |
| 68 | 67 | com12 | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( ( 𝑘 ∈ 𝑦 ∨ 𝑘 ∈ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
| 69 | 61 68 | biimtrid | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
| 70 | 69 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) → 𝑘 ∈ 𝐴 ) ) |
| 71 | 70 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐴 ) |
| 72 | 60 71 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐵 ∈ ℤ ) |
| 73 | 72 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) |
| 74 | fsumsplitsnun | ⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑧 ∈ V ∧ 𝑧 ∉ 𝑦 ) ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) | |
| 75 | 21 53 59 73 74 | syl121anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 76 | 75 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 77 | 51 76 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 ) → 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
| 78 | 77 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 2 ∥ Σ 𝑘 ∈ 𝑦 𝐵 → 2 ∥ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 79 | 5 7 9 11 15 78 1 | findcard2d | ⊢ ( 𝜑 → 2 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |