This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of vertices of odd degree is even in a finite simple graph. Proposition 1.2.1 in Diestel p. 5. See also remark about equation (2) in section I.1 in Bollobas p. 4. (Contributed by AV, 27-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdgeven.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| finsumvtxdgeven.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| finsumvtxdgeven.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | fusgrvtxdgonume | ⊢ ( 𝐺 ∈ FinUSGraph → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdgeven.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | finsumvtxdgeven.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | finsumvtxdgeven.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | 1 2 | fusgrfupgrfs | ⊢ ( 𝐺 ∈ FinUSGraph → ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ) |
| 5 | 1 2 3 | vtxdgoddnumeven | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ FinUSGraph → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) |