This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in a graph of finite size is a nonnegative integer. (Contributed by Alexander van der Vekens, 10-Mar-2018) (Revised by AV, 11-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdg0e.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vtxdgfisnn0.a | ⊢ 𝐴 = dom 𝐼 | ||
| Assertion | vtxdgfisnn0 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdg0e.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdgfisnn0.a | ⊢ 𝐴 = dom 𝐼 | |
| 4 | 1 2 3 | vtxdgfival | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| 5 | rabfi | ⊢ ( 𝐴 ∈ Fin → { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ Fin ) | |
| 6 | hashcl | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0 ) |
| 8 | rabfi | ⊢ ( 𝐴 ∈ Fin → { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ∈ Fin ) | |
| 9 | hashcl | ⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ∈ ℕ0 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ∈ ℕ0 ) |
| 11 | 7 10 | nn0addcld | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ∈ ℕ0 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ∈ ℕ0 ) |
| 13 | 4 12 | eqeltrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0 ) |