This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform structure is upward closed. Condition F_I of BourbakiTop1 p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017) (Proof shortened by AV, 17-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustssel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 2 | 1 | elfvexd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑋 ∈ V ) |
| 3 | isust | ⊢ ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
| 5 | 1 4 | mpbid | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
| 6 | 5 | simp3d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) |
| 7 | simp1 | ⊢ ( ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) | |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) |
| 9 | 6 8 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) |
| 10 | simp2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑉 ∈ 𝑈 ) | |
| 11 | 2 2 | xpexd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑋 × 𝑋 ) ∈ V ) |
| 12 | simp3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 13 | 11 12 | sselpwd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑊 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 14 | sseq1 | ⊢ ( 𝑣 = 𝑉 → ( 𝑣 ⊆ 𝑤 ↔ 𝑉 ⊆ 𝑤 ) ) | |
| 15 | 14 | imbi1d | ⊢ ( 𝑣 = 𝑉 → ( ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ↔ ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) ) |
| 16 | sseq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝑉 ⊆ 𝑤 ↔ 𝑉 ⊆ 𝑊 ) ) | |
| 17 | eleq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ∈ 𝑈 ↔ 𝑊 ∈ 𝑈 ) ) | |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ↔ ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) ) |
| 19 | 15 18 | rspc2v | ⊢ ( ( 𝑉 ∈ 𝑈 ∧ 𝑊 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) → ( ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) → ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) ) |
| 20 | 10 13 19 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) → ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) ) |
| 21 | 9 20 | mpd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈 ) ) |