This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop , similar to ssnei2 . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| Assertion | ustuqtop1 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> b e. ( N ` p ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| 2 | simpl1l | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ ( a e. ( N ` p ) /\ w e. U /\ a = ( w " { p } ) ) ) -> U e. ( UnifOn ` X ) ) |
|
| 3 | 2 | 3anassrs | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> U e. ( UnifOn ` X ) ) |
| 4 | simplr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> w e. U ) |
|
| 5 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ w e. U ) -> w C_ ( X X. X ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> w C_ ( X X. X ) ) |
| 7 | simpl1r | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ ( a e. ( N ` p ) /\ w e. U /\ a = ( w " { p } ) ) ) -> p e. X ) |
|
| 8 | 7 | 3anassrs | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> p e. X ) |
| 9 | 8 | snssd | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> { p } C_ X ) |
| 10 | simpl3 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ ( a e. ( N ` p ) /\ w e. U /\ a = ( w " { p } ) ) ) -> b C_ X ) |
|
| 11 | 10 | 3anassrs | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> b C_ X ) |
| 12 | xpss12 | |- ( ( { p } C_ X /\ b C_ X ) -> ( { p } X. b ) C_ ( X X. X ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( { p } X. b ) C_ ( X X. X ) ) |
| 14 | 6 13 | unssd | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( w u. ( { p } X. b ) ) C_ ( X X. X ) ) |
| 15 | ssun1 | |- w C_ ( w u. ( { p } X. b ) ) |
|
| 16 | 15 | a1i | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> w C_ ( w u. ( { p } X. b ) ) ) |
| 17 | ustssel | |- ( ( U e. ( UnifOn ` X ) /\ w e. U /\ ( w u. ( { p } X. b ) ) C_ ( X X. X ) ) -> ( w C_ ( w u. ( { p } X. b ) ) -> ( w u. ( { p } X. b ) ) e. U ) ) |
|
| 18 | 17 | imp | |- ( ( ( U e. ( UnifOn ` X ) /\ w e. U /\ ( w u. ( { p } X. b ) ) C_ ( X X. X ) ) /\ w C_ ( w u. ( { p } X. b ) ) ) -> ( w u. ( { p } X. b ) ) e. U ) |
| 19 | 3 4 14 16 18 | syl31anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( w u. ( { p } X. b ) ) e. U ) |
| 20 | simpl2 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ ( a e. ( N ` p ) /\ w e. U /\ a = ( w " { p } ) ) ) -> a C_ b ) |
|
| 21 | 20 | 3anassrs | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> a C_ b ) |
| 22 | ssequn1 | |- ( a C_ b <-> ( a u. b ) = b ) |
|
| 23 | 22 | biimpi | |- ( a C_ b -> ( a u. b ) = b ) |
| 24 | id | |- ( a = ( w " { p } ) -> a = ( w " { p } ) ) |
|
| 25 | inidm | |- ( { p } i^i { p } ) = { p } |
|
| 26 | vex | |- p e. _V |
|
| 27 | 26 | snnz | |- { p } =/= (/) |
| 28 | 25 27 | eqnetri | |- ( { p } i^i { p } ) =/= (/) |
| 29 | xpima2 | |- ( ( { p } i^i { p } ) =/= (/) -> ( ( { p } X. b ) " { p } ) = b ) |
|
| 30 | 28 29 | mp1i | |- ( a = ( w " { p } ) -> ( ( { p } X. b ) " { p } ) = b ) |
| 31 | 30 | eqcomd | |- ( a = ( w " { p } ) -> b = ( ( { p } X. b ) " { p } ) ) |
| 32 | 24 31 | uneq12d | |- ( a = ( w " { p } ) -> ( a u. b ) = ( ( w " { p } ) u. ( ( { p } X. b ) " { p } ) ) ) |
| 33 | imaundir | |- ( ( w u. ( { p } X. b ) ) " { p } ) = ( ( w " { p } ) u. ( ( { p } X. b ) " { p } ) ) |
|
| 34 | 32 33 | eqtr4di | |- ( a = ( w " { p } ) -> ( a u. b ) = ( ( w u. ( { p } X. b ) ) " { p } ) ) |
| 35 | 23 34 | sylan9req | |- ( ( a C_ b /\ a = ( w " { p } ) ) -> b = ( ( w u. ( { p } X. b ) ) " { p } ) ) |
| 36 | 21 35 | sylancom | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> b = ( ( w u. ( { p } X. b ) ) " { p } ) ) |
| 37 | imaeq1 | |- ( u = ( w u. ( { p } X. b ) ) -> ( u " { p } ) = ( ( w u. ( { p } X. b ) ) " { p } ) ) |
|
| 38 | 37 | rspceeqv | |- ( ( ( w u. ( { p } X. b ) ) e. U /\ b = ( ( w u. ( { p } X. b ) ) " { p } ) ) -> E. u e. U b = ( u " { p } ) ) |
| 39 | 19 36 38 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> E. u e. U b = ( u " { p } ) ) |
| 40 | 1 | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. _V ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
| 41 | 40 | elvd | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
| 42 | 41 | biimpa | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> E. w e. U a = ( w " { p } ) ) |
| 43 | 42 | 3ad2antl1 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> E. w e. U a = ( w " { p } ) ) |
| 44 | 39 43 | r19.29a | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> E. u e. U b = ( u " { p } ) ) |
| 45 | 1 | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b e. _V ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
| 46 | 45 | elvd | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
| 47 | 46 | 3ad2ant1 | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
| 48 | 47 | adantr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
| 49 | 44 48 | mpbird | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> b e. ( N ` p ) ) |