This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ushgredgedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| ushgredgedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| ushgredgedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| ushgredgedg.a | ⊢ 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } | ||
| ushgredgedg.b | ⊢ 𝐵 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | ||
| ushgredgedg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) | ||
| Assertion | ushgredgedg | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushgredgedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | ushgredgedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | ushgredgedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 4 | ushgredgedg.a | ⊢ 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } | |
| 5 | ushgredgedg.b | ⊢ 𝐵 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | |
| 6 | ushgredgedg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) | |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | 7 2 | ushgrf | ⊢ ( 𝐺 ∈ USHGraph → 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 10 | ssrab2 | ⊢ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ⊆ dom 𝐼 | |
| 11 | f1ores | ⊢ ( ( 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ⊆ dom 𝐼 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) : { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) : { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
| 13 | 4 | a1i | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) |
| 14 | eqidd | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) | |
| 15 | 13 14 | mpteq12dva | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
| 16 | 6 15 | eqtrid | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
| 17 | f1f | ⊢ ( 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → 𝐼 : dom 𝐼 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) | |
| 18 | 8 17 | syl | ⊢ ( 𝐺 ∈ USHGraph → 𝐼 : dom 𝐼 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 19 | 10 | a1i | ⊢ ( 𝐺 ∈ USHGraph → { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ⊆ dom 𝐼 ) |
| 20 | 18 19 | feqresmpt | ⊢ ( 𝐺 ∈ USHGraph → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) = ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
| 23 | 16 22 | eqtrd | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 = ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
| 24 | ushgruhgr | ⊢ ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) | |
| 25 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 26 | 25 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 27 | 24 26 | syl | ⊢ ( 𝐺 ∈ USHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 28 | 2 | funeqi | ⊢ ( Fun 𝐼 ↔ Fun ( iEdg ‘ 𝐺 ) ) |
| 29 | 27 28 | sylibr | ⊢ ( 𝐺 ∈ USHGraph → Fun 𝐼 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → Fun 𝐼 ) |
| 31 | dfimafn | ⊢ ( ( Fun 𝐼 ∧ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ⊆ dom 𝐼 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ) | |
| 32 | 30 10 31 | sylancl | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ) |
| 33 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( 𝐼 ‘ 𝑖 ) = ( 𝐼 ‘ 𝑗 ) ) | |
| 34 | 33 | eleq2d | ⊢ ( 𝑖 = 𝑗 → ( 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) ↔ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
| 35 | 34 | elrab | ⊢ ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↔ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
| 36 | simpl | ⊢ ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) → 𝑗 ∈ dom 𝐼 ) | |
| 37 | fvelrn | ⊢ ( ( Fun 𝐼 ∧ 𝑗 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran 𝐼 ) | |
| 38 | 2 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 39 | 38 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 40 | 39 | eleq2i | ⊢ ( ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran 𝐼 ) |
| 41 | 37 40 | sylibr | ⊢ ( ( Fun 𝐼 ∧ 𝑗 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 42 | 30 36 41 | syl2an | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 43 | 42 | 3adant3 | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 44 | eleq1 | ⊢ ( 𝑓 = ( 𝐼 ‘ 𝑗 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) | |
| 45 | 44 | eqcoms | ⊢ ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
| 46 | 45 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
| 47 | 43 46 | mpbird | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 48 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 49 | 48 | a1i | ⊢ ( 𝐺 ∈ USHGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 50 | 1 49 | eqtrid | ⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
| 51 | 50 | eleq2d | ⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
| 53 | 52 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
| 54 | 47 53 | mpbird | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑓 ∈ 𝐸 ) |
| 55 | eleq2 | ⊢ ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ↔ 𝑁 ∈ 𝑓 ) ) | |
| 56 | 55 | biimpcd | ⊢ ( 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ 𝑓 ) ) |
| 57 | 56 | adantl | ⊢ ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ 𝑓 ) ) |
| 58 | 57 | a1i | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ 𝑓 ) ) ) |
| 59 | 58 | 3imp | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑁 ∈ 𝑓 ) |
| 60 | 54 59 | jca | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) |
| 61 | 60 | 3exp | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) ) ) |
| 62 | 35 61 | biimtrid | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) ) ) |
| 63 | 62 | rexlimdv | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) ) |
| 64 | 27 | funfnd | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 65 | fvelrnb | ⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) | |
| 66 | 64 65 | syl | ⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) |
| 67 | 38 | dmeqi | ⊢ dom ( iEdg ‘ 𝐺 ) = dom 𝐼 |
| 68 | 67 | eleq2i | ⊢ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ↔ 𝑗 ∈ dom 𝐼 ) |
| 69 | 68 | biimpi | ⊢ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → 𝑗 ∈ dom 𝐼 ) |
| 70 | 69 | adantr | ⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → 𝑗 ∈ dom 𝐼 ) |
| 71 | 70 | adantl | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑗 ∈ dom 𝐼 ) |
| 72 | 38 | fveq1i | ⊢ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( 𝐼 ‘ 𝑗 ) |
| 73 | 72 | eqeq2i | ⊢ ( 𝑓 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ↔ 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
| 74 | 73 | biimpi | ⊢ ( 𝑓 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
| 75 | 74 | eqcoms | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
| 76 | 75 | eleq2d | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝑁 ∈ 𝑓 ↔ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
| 77 | 76 | biimpcd | ⊢ ( 𝑁 ∈ 𝑓 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
| 78 | 77 | adantl | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
| 79 | 78 | adantld | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
| 80 | 79 | imp | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) |
| 81 | 71 80 | jca | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
| 82 | 81 35 | sylibr | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) |
| 83 | 72 | eqeq1i | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ↔ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
| 84 | 83 | biimpi | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
| 85 | 84 | adantl | ⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
| 86 | 85 | adantl | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
| 87 | 82 86 | jca | ⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
| 88 | 87 | ex | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
| 89 | 88 | reximdv2 | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
| 90 | 89 | ex | ⊢ ( 𝐺 ∈ USHGraph → ( 𝑁 ∈ 𝑓 → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
| 91 | 90 | com23 | ⊢ ( 𝐺 ∈ USHGraph → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝑁 ∈ 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
| 92 | 66 91 | sylbid | ⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝑁 ∈ 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
| 93 | 51 92 | sylbid | ⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ 𝐸 → ( 𝑁 ∈ 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
| 94 | 93 | impd | ⊢ ( 𝐺 ∈ USHGraph → ( ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
| 95 | 94 | adantr | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
| 96 | 63 95 | impbid | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ↔ ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) ) |
| 97 | vex | ⊢ 𝑓 ∈ V | |
| 98 | eqeq2 | ⊢ ( 𝑒 = 𝑓 → ( ( 𝐼 ‘ 𝑗 ) = 𝑒 ↔ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) | |
| 99 | 98 | rexbidv | ⊢ ( 𝑒 = 𝑓 → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 ↔ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
| 100 | 97 99 | elab | ⊢ ( 𝑓 ∈ { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ↔ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
| 101 | eleq2 | ⊢ ( 𝑒 = 𝑓 → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑓 ) ) | |
| 102 | 101 5 | elrab2 | ⊢ ( 𝑓 ∈ 𝐵 ↔ ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) |
| 103 | 96 100 102 | 3bitr4g | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑓 ∈ { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ↔ 𝑓 ∈ 𝐵 ) ) |
| 104 | 103 | eqrdv | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } = 𝐵 ) |
| 105 | 32 104 | eqtrd | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 𝐵 ) |
| 106 | 105 | eqcomd | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐵 = ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
| 107 | 23 13 106 | f1oeq123d | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) : { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) ) |
| 108 | 12 107 | mpbird | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |