This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfimafn | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima2 | ⊢ ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 } | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ dom 𝐹 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹 ) ) | |
| 3 | funbrfvb | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) | |
| 4 | 3 | ex | ⊢ ( Fun 𝐹 → ( 𝑥 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) ) |
| 5 | 2 4 | syl9r | ⊢ ( Fun 𝐹 → ( 𝐴 ⊆ dom 𝐹 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) ) ) |
| 6 | 5 | imp31 | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
| 7 | 6 | rexbidva | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 8 | 7 | abbidv | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 } ) |
| 9 | 1 8 | eqtr4id | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |