This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020) (Revised by AV, 9-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ushgruhgr | ⊢ ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | ushgrf | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 4 | f1f | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 6 | 1 2 | isuhgr | ⊢ ( 𝐺 ∈ USHGraph → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 7 | 5 6 | mpbird | ⊢ ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) |