This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ushggricedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| ushggricedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| ushggricedg.s | ⊢ 𝐻 = 〈 𝑉 , ( I ↾ 𝐸 ) 〉 | ||
| Assertion | ushggricedg | ⊢ ( 𝐺 ∈ USHGraph → 𝐺 ≃𝑔𝑟 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushggricedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | ushggricedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | ushggricedg.s | ⊢ 𝐻 = 〈 𝑉 , ( I ↾ 𝐸 ) 〉 | |
| 4 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 5 | 4 | a1i | ⊢ ( 𝐺 ∈ USHGraph → 𝑉 ∈ V ) |
| 6 | 5 | resiexd | ⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) ∈ V ) |
| 7 | f1oi | ⊢ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 | |
| 8 | 7 | a1i | ⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 ) |
| 9 | 3 | fveq2i | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) |
| 10 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 11 | resiexg | ⊢ ( 𝐸 ∈ V → ( I ↾ 𝐸 ) ∈ V ) | |
| 12 | 10 11 | ax-mp | ⊢ ( I ↾ 𝐸 ) ∈ V |
| 13 | 4 12 | pm3.2i | ⊢ ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) |
| 14 | opvtxfv | ⊢ ( ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) | |
| 15 | 13 14 | mp1i | ⊢ ( 𝐺 ∈ USHGraph → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) |
| 16 | 9 15 | eqtrid | ⊢ ( 𝐺 ∈ USHGraph → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
| 17 | 16 | f1oeq3d | ⊢ ( 𝐺 ∈ USHGraph → ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 ) ) |
| 18 | 8 17 | mpbird | ⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 19 | fvexd | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) ∈ V ) | |
| 20 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 21 | 1 20 | ushgrf | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 22 | f1f1orn | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) |
| 24 | 3 | fveq2i | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) |
| 25 | 10 | a1i | ⊢ ( 𝐺 ∈ USHGraph → 𝐸 ∈ V ) |
| 26 | 25 | resiexd | ⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝐸 ) ∈ V ) |
| 27 | opiedgfv | ⊢ ( ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) | |
| 28 | 4 26 27 | sylancr | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
| 29 | 24 28 | eqtrid | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐻 ) = ( I ↾ 𝐸 ) ) |
| 30 | 29 | dmeqd | ⊢ ( 𝐺 ∈ USHGraph → dom ( iEdg ‘ 𝐻 ) = dom ( I ↾ 𝐸 ) ) |
| 31 | dmresi | ⊢ dom ( I ↾ 𝐸 ) = 𝐸 | |
| 32 | 2 | a1i | ⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ( Edg ‘ 𝐺 ) ) |
| 33 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 34 | 32 33 | eqtrdi | ⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
| 35 | 31 34 | eqtrid | ⊢ ( 𝐺 ∈ USHGraph → dom ( I ↾ 𝐸 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 36 | 30 35 | eqtrd | ⊢ ( 𝐺 ∈ USHGraph → dom ( iEdg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 37 | 36 | f1oeq3d | ⊢ ( 𝐺 ∈ USHGraph → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) ) |
| 38 | 23 37 | mpbird | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
| 39 | ushgruhgr | ⊢ ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) | |
| 40 | 1 20 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 ) |
| 41 | 39 40 | sylan | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 ) |
| 42 | resiima | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 44 | f1f | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) | |
| 45 | 21 44 | syl | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 46 | 45 | ffund | ⊢ ( 𝐺 ∈ USHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 47 | fvelrn | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐺 ) ) | |
| 48 | 46 47 | sylan | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 49 | 2 33 | eqtri | ⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
| 50 | 48 49 | eleqtrrdi | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐸 ) |
| 51 | fvresi | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐸 → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 53 | 10 | a1i | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → 𝐸 ∈ V ) |
| 54 | 53 | resiexd | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( I ↾ 𝐸 ) ∈ V ) |
| 55 | 4 54 27 | sylancr | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
| 56 | 24 55 | eqtr2id | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( I ↾ 𝐸 ) = ( iEdg ‘ 𝐻 ) ) |
| 57 | 56 | fveq1d | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 58 | 43 52 57 | 3eqtr2d | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 59 | 58 | ralrimiva | ⊢ ( 𝐺 ∈ USHGraph → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 60 | 38 59 | jca | ⊢ ( 𝐺 ∈ USHGraph → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 61 | f1oeq1 | ⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) | |
| 62 | fveq1 | ⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( 𝑔 ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) | |
| 63 | 62 | fveq2d | ⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 64 | 63 | eqeq2d | ⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 65 | 64 | ralbidv | ⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 66 | 61 65 | anbi12d | ⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 67 | 19 60 66 | spcedv | ⊢ ( 𝐺 ∈ USHGraph → ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 68 | 18 67 | jca | ⊢ ( 𝐺 ∈ USHGraph → ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 69 | f1oeq1 | ⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) | |
| 70 | imaeq1 | ⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 71 | 70 | eqeq1d | ⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 72 | 71 | ralbidv | ⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 73 | 72 | anbi2d | ⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 74 | 73 | exbidv | ⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 75 | 69 74 | anbi12d | ⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 76 | 6 68 75 | spcedv | ⊢ ( 𝐺 ∈ USHGraph → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 77 | opex | ⊢ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ V | |
| 78 | 3 77 | eqeltri | ⊢ 𝐻 ∈ V |
| 79 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 80 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 81 | 1 79 20 80 | dfgric2 | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝐻 ∈ V ) → ( 𝐺 ≃𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 82 | 78 81 | mpan2 | ⊢ ( 𝐺 ∈ USHGraph → ( 𝐺 ≃𝑔𝑟 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 83 | 76 82 | mpbird | ⊢ ( 𝐺 ∈ USHGraph → 𝐺 ≃𝑔𝑟 𝐻 ) |