This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two simple pseudographs are not isomorphic if one has a cycle and the other has no cycle of the same length. (Contributed by AV, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cycldlenngric | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ∧ ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | ⊢ ( 𝐺 ≃𝑔𝑟 𝐻 ↔ ( 𝐺 GraphIso 𝐻 ) ≠ ∅ ) | |
| 2 | n0rex | ⊢ ( ( 𝐺 GraphIso 𝐻 ) ≠ ∅ → ∃ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 5 | simprll | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝐺 ∈ USPGraph ) | |
| 6 | simprlr | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝐻 ∈ USPGraph ) | |
| 7 | simpl | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 8 | 2fveq3 | ⊢ ( 𝑥 = 𝑗 → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑗 ) ) ) | |
| 9 | 8 | imaeq2d | ⊢ ( 𝑥 = 𝑗 → ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑗 ) ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑥 = 𝑗 → ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) = ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑗 ) ) ) ) ) |
| 11 | 10 | cbvmptv | ⊢ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) = ( 𝑗 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑗 ) ) ) ) ) |
| 12 | cycliswlk | ⊢ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
| 15 | 3 4 5 6 7 11 14 | upgrimwlklen | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ) |
| 16 | simprrl | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ) | |
| 17 | 3 4 5 6 7 11 16 | upgrimcycls | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) |
| 18 | simp3 | ⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) | |
| 19 | simp2r | ⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) | |
| 20 | simprrr | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → ( ♯ ‘ 𝑓 ) = 𝑁 ) | |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ( ♯ ‘ 𝑓 ) = 𝑁 ) |
| 22 | 19 21 | eqtrd | ⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) |
| 23 | vex | ⊢ 𝑖 ∈ V | |
| 24 | vex | ⊢ 𝑝 ∈ V | |
| 25 | 23 24 | coex | ⊢ ( 𝑖 ∘ 𝑝 ) ∈ V |
| 26 | vex | ⊢ 𝑓 ∈ V | |
| 27 | 26 | dmex | ⊢ dom 𝑓 ∈ V |
| 28 | 27 | mptex | ⊢ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ∈ V |
| 29 | breq12 | ⊢ ( ( 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ∧ 𝑞 = ( 𝑖 ∘ 𝑝 ) ) → ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ↔ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) ) | |
| 30 | 29 | ancoms | ⊢ ( ( 𝑞 = ( 𝑖 ∘ 𝑝 ) ∧ 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) → ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ↔ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) ) |
| 31 | fveqeq2 | ⊢ ( 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) → ( ( ♯ ‘ 𝑔 ) = 𝑁 ↔ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝑞 = ( 𝑖 ∘ 𝑝 ) ∧ 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) → ( ( ♯ ‘ 𝑔 ) = 𝑁 ↔ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) ) |
| 33 | 30 32 | anbi12d | ⊢ ( ( 𝑞 = ( 𝑖 ∘ 𝑝 ) ∧ 𝑔 = ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) → ( ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ↔ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) ) ) |
| 34 | 25 28 33 | spc2ev | ⊢ ( ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = 𝑁 ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 35 | 18 22 34 | syl2anc | ⊢ ( ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ∧ ( ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Walks ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ∧ ( ♯ ‘ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ) = ( ♯ ‘ 𝑓 ) ) ∧ ( 𝑥 ∈ dom 𝑓 ↦ ( ◡ ( iEdg ‘ 𝐻 ) ‘ ( 𝑖 “ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) ( Cycles ‘ 𝐻 ) ( 𝑖 ∘ 𝑝 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 36 | 15 17 35 | mpd3an23 | ⊢ ( ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 37 | 36 | ex | ⊢ ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 38 | 37 | rexlimivw | ⊢ ( ∃ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 39 | 2 38 | syl | ⊢ ( ( 𝐺 GraphIso 𝐻 ) ≠ ∅ → ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 40 | 1 39 | sylbi | ⊢ ( 𝐺 ≃𝑔𝑟 𝐻 → ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 41 | 40 | expdcom | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → ( 𝐺 ≃𝑔𝑟 𝐻 → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) ) |
| 42 | 41 | exlimdvv | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → ( 𝐺 ≃𝑔𝑟 𝐻 → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) ) |
| 43 | 42 | imp | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ( 𝐺 ≃𝑔𝑟 𝐻 → ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 44 | breq12 | ⊢ ( ( 𝑓 = 𝑔 ∧ 𝑝 = 𝑞 ) → ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ↔ 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ) ) | |
| 45 | 44 | ancoms | ⊢ ( ( 𝑝 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ↔ 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ) ) |
| 46 | fveqeq2 | ⊢ ( 𝑓 = 𝑔 → ( ( ♯ ‘ 𝑓 ) = 𝑁 ↔ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) | |
| 47 | 46 | adantl | ⊢ ( ( 𝑝 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( ( ♯ ‘ 𝑓 ) = 𝑁 ↔ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 48 | 45 47 | anbi12d | ⊢ ( ( 𝑝 = 𝑞 ∧ 𝑓 = 𝑔 ) → ( ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ↔ ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) ) |
| 49 | 48 | cbvex2vw | ⊢ ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ↔ ∃ 𝑞 ∃ 𝑔 ( 𝑔 ( Cycles ‘ 𝐻 ) 𝑞 ∧ ( ♯ ‘ 𝑔 ) = 𝑁 ) ) |
| 50 | 43 49 | imbitrrdi | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ( 𝐺 ≃𝑔𝑟 𝐻 → ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |
| 51 | 50 | con3d | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) ∧ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ( ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
| 52 | 51 | expimpd | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ) → ( ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ∧ ¬ ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐻 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |