This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ushggricedg.v | |- V = ( Vtx ` G ) |
|
| ushggricedg.e | |- E = ( Edg ` G ) |
||
| ushggricedg.s | |- H = <. V , ( _I |` E ) >. |
||
| Assertion | ushggricedg | |- ( G e. USHGraph -> G ~=gr H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ushggricedg.v | |- V = ( Vtx ` G ) |
|
| 2 | ushggricedg.e | |- E = ( Edg ` G ) |
|
| 3 | ushggricedg.s | |- H = <. V , ( _I |` E ) >. |
|
| 4 | 1 | fvexi | |- V e. _V |
| 5 | 4 | a1i | |- ( G e. USHGraph -> V e. _V ) |
| 6 | 5 | resiexd | |- ( G e. USHGraph -> ( _I |` V ) e. _V ) |
| 7 | f1oi | |- ( _I |` V ) : V -1-1-onto-> V |
|
| 8 | 7 | a1i | |- ( G e. USHGraph -> ( _I |` V ) : V -1-1-onto-> V ) |
| 9 | 3 | fveq2i | |- ( Vtx ` H ) = ( Vtx ` <. V , ( _I |` E ) >. ) |
| 10 | 2 | fvexi | |- E e. _V |
| 11 | resiexg | |- ( E e. _V -> ( _I |` E ) e. _V ) |
|
| 12 | 10 11 | ax-mp | |- ( _I |` E ) e. _V |
| 13 | 4 12 | pm3.2i | |- ( V e. _V /\ ( _I |` E ) e. _V ) |
| 14 | opvtxfv | |- ( ( V e. _V /\ ( _I |` E ) e. _V ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
|
| 15 | 13 14 | mp1i | |- ( G e. USHGraph -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
| 16 | 9 15 | eqtrid | |- ( G e. USHGraph -> ( Vtx ` H ) = V ) |
| 17 | 16 | f1oeq3d | |- ( G e. USHGraph -> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) <-> ( _I |` V ) : V -1-1-onto-> V ) ) |
| 18 | 8 17 | mpbird | |- ( G e. USHGraph -> ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) ) |
| 19 | fvexd | |- ( G e. USHGraph -> ( iEdg ` G ) e. _V ) |
|
| 20 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 21 | 1 20 | ushgrf | |- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) ) |
| 22 | f1f1orn | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) |
|
| 23 | 21 22 | syl | |- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) |
| 24 | 3 | fveq2i | |- ( iEdg ` H ) = ( iEdg ` <. V , ( _I |` E ) >. ) |
| 25 | 10 | a1i | |- ( G e. USHGraph -> E e. _V ) |
| 26 | 25 | resiexd | |- ( G e. USHGraph -> ( _I |` E ) e. _V ) |
| 27 | opiedgfv | |- ( ( V e. _V /\ ( _I |` E ) e. _V ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
|
| 28 | 4 26 27 | sylancr | |- ( G e. USHGraph -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
| 29 | 24 28 | eqtrid | |- ( G e. USHGraph -> ( iEdg ` H ) = ( _I |` E ) ) |
| 30 | 29 | dmeqd | |- ( G e. USHGraph -> dom ( iEdg ` H ) = dom ( _I |` E ) ) |
| 31 | dmresi | |- dom ( _I |` E ) = E |
|
| 32 | 2 | a1i | |- ( G e. USHGraph -> E = ( Edg ` G ) ) |
| 33 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 34 | 32 33 | eqtrdi | |- ( G e. USHGraph -> E = ran ( iEdg ` G ) ) |
| 35 | 31 34 | eqtrid | |- ( G e. USHGraph -> dom ( _I |` E ) = ran ( iEdg ` G ) ) |
| 36 | 30 35 | eqtrd | |- ( G e. USHGraph -> dom ( iEdg ` H ) = ran ( iEdg ` G ) ) |
| 37 | 36 | f1oeq3d | |- ( G e. USHGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) ) |
| 38 | 23 37 | mpbird | |- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
| 39 | ushgruhgr | |- ( G e. USHGraph -> G e. UHGraph ) |
|
| 40 | 1 20 | uhgrss | |- ( ( G e. UHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ V ) |
| 41 | 39 40 | sylan | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ V ) |
| 42 | resiima | |- ( ( ( iEdg ` G ) ` i ) C_ V -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
|
| 43 | 41 42 | syl | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
| 44 | f1f | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
|
| 45 | 21 44 | syl | |- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 46 | 45 | ffund | |- ( G e. USHGraph -> Fun ( iEdg ` G ) ) |
| 47 | fvelrn | |- ( ( Fun ( iEdg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ran ( iEdg ` G ) ) |
|
| 48 | 46 47 | sylan | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ran ( iEdg ` G ) ) |
| 49 | 2 33 | eqtri | |- E = ran ( iEdg ` G ) |
| 50 | 48 49 | eleqtrrdi | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. E ) |
| 51 | fvresi | |- ( ( ( iEdg ` G ) ` i ) e. E -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
|
| 52 | 50 51 | syl | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
| 53 | 10 | a1i | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> E e. _V ) |
| 54 | 53 | resiexd | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( _I |` E ) e. _V ) |
| 55 | 4 54 27 | sylancr | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
| 56 | 24 55 | eqtr2id | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( _I |` E ) = ( iEdg ` H ) ) |
| 57 | 56 | fveq1d | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
| 58 | 43 52 57 | 3eqtr2d | |- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
| 59 | 58 | ralrimiva | |- ( G e. USHGraph -> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
| 60 | 38 59 | jca | |- ( G e. USHGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
| 61 | f1oeq1 | |- ( g = ( iEdg ` G ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
|
| 62 | fveq1 | |- ( g = ( iEdg ` G ) -> ( g ` i ) = ( ( iEdg ` G ) ` i ) ) |
|
| 63 | 62 | fveq2d | |- ( g = ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( g ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
| 64 | 63 | eqeq2d | |- ( g = ( iEdg ` G ) -> ( ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
| 65 | 64 | ralbidv | |- ( g = ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
| 66 | 61 65 | anbi12d | |- ( g = ( iEdg ` G ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 67 | 19 60 66 | spcedv | |- ( G e. USHGraph -> E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
| 68 | 18 67 | jca | |- ( G e. USHGraph -> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
| 69 | f1oeq1 | |- ( f = ( _I |` V ) -> ( f : V -1-1-onto-> ( Vtx ` H ) <-> ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) ) ) |
|
| 70 | imaeq1 | |- ( f = ( _I |` V ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) ) |
|
| 71 | 70 | eqeq1d | |- ( f = ( _I |` V ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
| 72 | 71 | ralbidv | |- ( f = ( _I |` V ) -> ( A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
| 73 | 72 | anbi2d | |- ( f = ( _I |` V ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
| 74 | 73 | exbidv | |- ( f = ( _I |` V ) -> ( E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
| 75 | 69 74 | anbi12d | |- ( f = ( _I |` V ) -> ( ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) <-> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
| 76 | 6 68 75 | spcedv | |- ( G e. USHGraph -> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
| 77 | opex | |- <. V , ( _I |` E ) >. e. _V |
|
| 78 | 3 77 | eqeltri | |- H e. _V |
| 79 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 80 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 81 | 1 79 20 80 | dfgric2 | |- ( ( G e. USHGraph /\ H e. _V ) -> ( G ~=gr H <-> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
| 82 | 78 81 | mpan2 | |- ( G e. USHGraph -> ( G ~=gr H <-> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
| 83 | 76 82 | mpbird | |- ( G e. USHGraph -> G ~=gr H ) |