This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrgrtrirex.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgrgrtrirex.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| usgrgrtrirex.n | ⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑎 ) | ||
| Assertion | usgrgrtrirex | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrgrtrirex.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgrgrtrirex.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | usgrgrtrirex.n | ⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑎 ) | |
| 4 | 1 2 | isgrtri | ⊢ ( 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 6 | rexcom4 | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) | |
| 7 | fveqeq2 | ⊢ ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) |
| 9 | neeq1 | ⊢ ( 𝑏 = 𝑦 → ( 𝑏 ≠ 𝑐 ↔ 𝑦 ≠ 𝑐 ) ) | |
| 10 | preq1 | ⊢ ( 𝑏 = 𝑦 → { 𝑏 , 𝑐 } = { 𝑦 , 𝑐 } ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑏 = 𝑦 → ( { 𝑏 , 𝑐 } ∈ 𝐸 ↔ { 𝑦 , 𝑐 } ∈ 𝐸 ) ) |
| 12 | 9 11 | anbi12d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ↔ ( 𝑦 ≠ 𝑐 ∧ { 𝑦 , 𝑐 } ∈ 𝐸 ) ) ) |
| 13 | neeq2 | ⊢ ( 𝑐 = 𝑧 → ( 𝑦 ≠ 𝑐 ↔ 𝑦 ≠ 𝑧 ) ) | |
| 14 | preq2 | ⊢ ( 𝑐 = 𝑧 → { 𝑦 , 𝑐 } = { 𝑦 , 𝑧 } ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑐 = 𝑧 → ( { 𝑦 , 𝑐 } ∈ 𝐸 ↔ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 16 | 13 15 | anbi12d | ⊢ ( 𝑐 = 𝑧 → ( ( 𝑦 ≠ 𝑐 ∧ { 𝑦 , 𝑐 } ∈ 𝐸 ) ↔ ( 𝑦 ≠ 𝑧 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 17 | prcom | ⊢ { 𝑎 , 𝑦 } = { 𝑦 , 𝑎 } | |
| 18 | 17 | eleq1i | ⊢ ( { 𝑎 , 𝑦 } ∈ 𝐸 ↔ { 𝑦 , 𝑎 } ∈ 𝐸 ) |
| 19 | 2 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑦 , 𝑎 } ∈ 𝐸 ) ) |
| 20 | 19 | biimprcd | ⊢ ( { 𝑦 , 𝑎 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 21 | 18 20 | sylbi | ⊢ ( { 𝑎 , 𝑦 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐺 ∈ USGraph → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 23 | 22 | com12 | ⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 26 | 25 | a1d | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) ) |
| 27 | 26 | 3imp | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 28 | 27 3 | eleqtrrdi | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ∈ 𝑁 ) |
| 29 | prcom | ⊢ { 𝑎 , 𝑧 } = { 𝑧 , 𝑎 } | |
| 30 | 29 | eleq1i | ⊢ ( { 𝑎 , 𝑧 } ∈ 𝐸 ↔ { 𝑧 , 𝑎 } ∈ 𝐸 ) |
| 31 | 2 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑧 , 𝑎 } ∈ 𝐸 ) ) |
| 32 | 31 | biimprcd | ⊢ ( { 𝑧 , 𝑎 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 33 | 30 32 | sylbi | ⊢ ( { 𝑎 , 𝑧 } ∈ 𝐸 → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 34 | 33 | 3ad2ant2 | ⊢ ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ( 𝐺 ∈ USGraph → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 35 | 34 | com12 | ⊢ ( 𝐺 ∈ USGraph → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 38 | 37 | a1d | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) ) |
| 39 | 38 | 3imp | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑧 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 40 | 39 3 | eleqtrrdi | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑧 ∈ 𝑁 ) |
| 41 | hashtpg | ⊢ ( ( 𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ) ) | |
| 42 | 41 | bicomd | ⊢ ( ( 𝑎 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ↔ ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ) ) |
| 43 | 42 | el3v | ⊢ ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ↔ ( 𝑎 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑎 ) ) |
| 44 | 43 | simp2bi | ⊢ ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → 𝑦 ≠ 𝑧 ) |
| 45 | 44 | 3ad2ant2 | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → 𝑦 ≠ 𝑧 ) |
| 46 | simp33 | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → { 𝑦 , 𝑧 } ∈ 𝐸 ) | |
| 47 | 45 46 | jca | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ( 𝑦 ≠ 𝑧 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) |
| 48 | 12 16 28 40 47 | 2rspcedvdw | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
| 49 | 48 | 3exp | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ { 𝑎 , 𝑦 , 𝑧 } ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
| 51 | 8 50 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ) → ( ( ♯ ‘ 𝑡 ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
| 52 | 51 | ex | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } → ( ( ♯ ‘ 𝑡 ) = 3 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) ) |
| 53 | 52 | 3impd | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 54 | 53 | rexlimdvva | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 55 | 54 | exlimdv | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) → ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 56 | 3 | eleq2i | ⊢ ( 𝑏 ∈ 𝑁 ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 57 | 2 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) ) |
| 58 | 56 57 | bitrid | ⊢ ( 𝐺 ∈ USGraph → ( 𝑏 ∈ 𝑁 ↔ { 𝑏 , 𝑎 } ∈ 𝐸 ) ) |
| 59 | 3 | eleq2i | ⊢ ( 𝑐 ∈ 𝑁 ↔ 𝑐 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 60 | 2 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑐 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) |
| 61 | 59 60 | bitrid | ⊢ ( 𝐺 ∈ USGraph → ( 𝑐 ∈ 𝑁 ↔ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) |
| 62 | 58 61 | anbi12d | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) ↔ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) ↔ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) ) |
| 64 | tpex | ⊢ { 𝑎 , 𝑏 , 𝑐 } ∈ V | |
| 65 | 64 | a1i | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 , 𝑐 } ∈ V ) |
| 66 | tpeq2 | ⊢ ( 𝑦 = 𝑏 → { 𝑎 , 𝑦 , 𝑧 } = { 𝑎 , 𝑏 , 𝑧 } ) | |
| 67 | 66 | eqeq2d | ⊢ ( 𝑦 = 𝑏 → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ) ) |
| 68 | preq2 | ⊢ ( 𝑦 = 𝑏 → { 𝑎 , 𝑦 } = { 𝑎 , 𝑏 } ) | |
| 69 | 68 | eleq1d | ⊢ ( 𝑦 = 𝑏 → ( { 𝑎 , 𝑦 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 70 | preq1 | ⊢ ( 𝑦 = 𝑏 → { 𝑦 , 𝑧 } = { 𝑏 , 𝑧 } ) | |
| 71 | 70 | eleq1d | ⊢ ( 𝑦 = 𝑏 → ( { 𝑦 , 𝑧 } ∈ 𝐸 ↔ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) |
| 72 | 69 71 | 3anbi13d | ⊢ ( 𝑦 = 𝑏 → ( ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ) |
| 73 | 67 72 | 3anbi13d | ⊢ ( 𝑦 = 𝑏 → ( ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ) ) |
| 74 | tpeq3 | ⊢ ( 𝑧 = 𝑐 → { 𝑎 , 𝑏 , 𝑧 } = { 𝑎 , 𝑏 , 𝑐 } ) | |
| 75 | 74 | eqeq2d | ⊢ ( 𝑧 = 𝑐 → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ) ) |
| 76 | preq2 | ⊢ ( 𝑧 = 𝑐 → { 𝑎 , 𝑧 } = { 𝑎 , 𝑐 } ) | |
| 77 | 76 | eleq1d | ⊢ ( 𝑧 = 𝑐 → ( { 𝑎 , 𝑧 } ∈ 𝐸 ↔ { 𝑎 , 𝑐 } ∈ 𝐸 ) ) |
| 78 | preq2 | ⊢ ( 𝑧 = 𝑐 → { 𝑏 , 𝑧 } = { 𝑏 , 𝑐 } ) | |
| 79 | 78 | eleq1d | ⊢ ( 𝑧 = 𝑐 → ( { 𝑏 , 𝑧 } ∈ 𝐸 ↔ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
| 80 | 77 79 | 3anbi23d | ⊢ ( 𝑧 = 𝑐 → ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 81 | 75 80 | 3anbi13d | ⊢ ( 𝑧 = 𝑐 → ( ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑏 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) ) |
| 82 | usgruhgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) | |
| 83 | 82 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → 𝐺 ∈ UHGraph ) |
| 84 | 2 | eleq2i | ⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 ↔ { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 85 | 84 | biimpi | ⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 → { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 86 | 85 | adantr | ⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 87 | vex | ⊢ 𝑏 ∈ V | |
| 88 | 87 | prid1 | ⊢ 𝑏 ∈ { 𝑏 , 𝑎 } |
| 89 | 88 | a1i | ⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑏 ∈ { 𝑏 , 𝑎 } ) |
| 90 | uhgredgrnv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑏 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑏 ∈ { 𝑏 , 𝑎 } ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 91 | 83 86 89 90 | syl3an | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ∈ ( Vtx ‘ 𝐺 ) ) |
| 92 | 91 1 | eleqtrrdi | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ∈ 𝑉 ) |
| 93 | 2 | eleq2i | ⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 94 | 93 | biimpi | ⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 → { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 95 | 94 | adantl | ⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) |
| 96 | vex | ⊢ 𝑐 ∈ V | |
| 97 | 96 | prid1 | ⊢ 𝑐 ∈ { 𝑐 , 𝑎 } |
| 98 | 97 | a1i | ⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑐 ∈ { 𝑐 , 𝑎 } ) |
| 99 | uhgredgrnv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝑐 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑐 ∈ { 𝑐 , 𝑎 } ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 100 | 83 95 98 99 | syl3an | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ∈ ( Vtx ‘ 𝐺 ) ) |
| 101 | 100 1 | eleqtrrdi | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ∈ 𝑉 ) |
| 102 | eqidd | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ) | |
| 103 | 2 | usgredgne | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑏 , 𝑎 } ∈ 𝐸 ) → 𝑏 ≠ 𝑎 ) |
| 104 | 103 | necomd | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑏 , 𝑎 } ∈ 𝐸 ) → 𝑎 ≠ 𝑏 ) |
| 105 | 104 | ad2ant2r | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) → 𝑎 ≠ 𝑏 ) |
| 106 | 105 | 3adant3 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑎 ≠ 𝑏 ) |
| 107 | simpl | ⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → 𝑏 ≠ 𝑐 ) | |
| 108 | 107 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑏 ≠ 𝑐 ) |
| 109 | 2 | usgredgne | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → 𝑐 ≠ 𝑎 ) |
| 110 | 109 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ) → 𝑐 ≠ 𝑎 ) |
| 111 | 110 | 3adant3 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → 𝑐 ≠ 𝑎 ) |
| 112 | 106 108 111 | 3jca | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ) |
| 113 | hashtpg | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑐 ∈ V ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) ) | |
| 114 | 113 | el3v | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎 ) ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) |
| 115 | 112 114 | sylib | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) |
| 116 | prcom | ⊢ { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 } | |
| 117 | 116 | eleq1i | ⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 118 | 117 | biimpi | ⊢ ( { 𝑏 , 𝑎 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 119 | 118 | adantr | ⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 120 | 119 | 3ad2ant2 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| 121 | prcom | ⊢ { 𝑐 , 𝑎 } = { 𝑎 , 𝑐 } | |
| 122 | 121 | eleq1i | ⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 ↔ { 𝑎 , 𝑐 } ∈ 𝐸 ) |
| 123 | 122 | biimpi | ⊢ ( { 𝑐 , 𝑎 } ∈ 𝐸 → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
| 124 | 123 | adantl | ⊢ ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
| 125 | 124 | 3ad2ant2 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑎 , 𝑐 } ∈ 𝐸 ) |
| 126 | simpr | ⊢ ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → { 𝑏 , 𝑐 } ∈ 𝐸 ) | |
| 127 | 126 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → { 𝑏 , 𝑐 } ∈ 𝐸 ) |
| 128 | 120 125 127 | 3jca | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) |
| 129 | 102 115 128 | 3jca | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ { 𝑎 , 𝑐 } ∈ 𝐸 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 130 | 73 81 92 101 129 | 2rspcedvdw | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 131 | eqeq1 | ⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ↔ { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ) ) | |
| 132 | fveqeq2 | ⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ( ♯ ‘ 𝑡 ) = 3 ↔ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ) ) | |
| 133 | 131 132 | 3anbi12d | ⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
| 134 | 133 | 2rexbidv | ⊢ ( 𝑡 = { 𝑎 , 𝑏 , 𝑐 } → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( { 𝑎 , 𝑏 , 𝑐 } = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ { 𝑎 , 𝑏 , 𝑐 } ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
| 135 | 65 130 134 | spcedv | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) ∧ ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) |
| 136 | 135 | 3exp | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( { 𝑏 , 𝑎 } ∈ 𝐸 ∧ { 𝑐 , 𝑎 } ∈ 𝐸 ) → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) ) |
| 137 | 63 136 | sylbid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → ( ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) ) |
| 138 | 137 | rexlimdvv | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) → ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ) ) |
| 139 | 55 138 | impbid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 140 | 139 | rexbidva | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑡 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 141 | 6 140 | bitr3id | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑡 ∃ 𝑎 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑡 = { 𝑎 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ 𝑡 ) = 3 ∧ ( { 𝑎 , 𝑦 } ∈ 𝐸 ∧ { 𝑎 , 𝑧 } ∈ 𝐸 ∧ { 𝑦 , 𝑧 } ∈ 𝐸 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |
| 142 | 5 141 | bitrid | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑁 ∃ 𝑐 ∈ 𝑁 ( 𝑏 ≠ 𝑐 ∧ { 𝑏 , 𝑐 } ∈ 𝐸 ) ) ) |