This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of an unordered triple of three different elements. (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashtpg | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → 𝐶 ∈ 𝑊 ) | |
| 2 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 3 | 2 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 4 | elprg | ⊢ ( 𝐶 ∈ 𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } ↔ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) | |
| 5 | orcom | ⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐴 ) ) | |
| 6 | nne | ⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) | |
| 7 | eqcom | ⊢ ( 𝐵 = 𝐶 ↔ 𝐶 = 𝐵 ) | |
| 8 | 6 7 | bitr2i | ⊢ ( 𝐶 = 𝐵 ↔ ¬ 𝐵 ≠ 𝐶 ) |
| 9 | nne | ⊢ ( ¬ 𝐶 ≠ 𝐴 ↔ 𝐶 = 𝐴 ) | |
| 10 | 9 | bicomi | ⊢ ( 𝐶 = 𝐴 ↔ ¬ 𝐶 ≠ 𝐴 ) |
| 11 | 8 10 | orbi12i | ⊢ ( ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐴 ) ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) |
| 12 | 5 11 | bitri | ⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) |
| 13 | 4 12 | bitrdi | ⊢ ( 𝐶 ∈ 𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 14 | 13 | biimpd | ⊢ ( 𝐶 ∈ 𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) |
| 17 | 16 | olcd | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ¬ 𝐴 ≠ 𝐵 ∨ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐴 ≠ 𝐵 ∨ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) ) |
| 19 | 3orass | ⊢ ( ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ↔ ( ¬ 𝐴 ≠ 𝐵 ∨ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) | |
| 20 | 18 19 | imbitrrdi | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) ) |
| 21 | 3ianor | ⊢ ( ¬ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ↔ ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) ) | |
| 22 | 20 21 | imbitrrdi | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ¬ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) ) |
| 23 | 22 | con2d | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) ) |
| 24 | 23 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) |
| 25 | hashunsng | ⊢ ( 𝐶 ∈ 𝑊 → ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) ) ) | |
| 26 | 25 | imp | ⊢ ( ( 𝐶 ∈ 𝑊 ∧ ( { 𝐴 , 𝐵 } ∈ Fin ∧ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) ) |
| 27 | 1 3 24 26 | syl12anc | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) ) |
| 28 | simpr1 | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → 𝐴 ≠ 𝐵 ) | |
| 29 | 3simpa | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) | |
| 30 | 29 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) |
| 31 | hashprg | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 33 | 28 32 | mpbid | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 34 | 33 | oveq1d | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) = ( 2 + 1 ) ) |
| 35 | 27 34 | eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( 2 + 1 ) ) |
| 36 | df-tp | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) | |
| 37 | 36 | fveq2i | ⊢ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) |
| 38 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 39 | 35 37 38 | 3eqtr4g | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) |
| 40 | 39 | ex | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) ) |
| 41 | nne | ⊢ ( ¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵 ) | |
| 42 | hashprlei | ⊢ ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) | |
| 43 | prfi | ⊢ { 𝐵 , 𝐶 } ∈ Fin | |
| 44 | hashcl | ⊢ ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℕ0 ) | |
| 45 | 44 | nn0zd | ⊢ ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ) |
| 46 | 43 45 | ax-mp | ⊢ ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ |
| 47 | 2z | ⊢ 2 ∈ ℤ | |
| 48 | zleltp1 | ⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) ) ) | |
| 49 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 50 | 49 | a1i | ⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 ) |
| 51 | 50 | breq2d | ⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) ) |
| 52 | 51 | biimpd | ⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) ) |
| 53 | 48 52 | sylbid | ⊢ ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) ) |
| 54 | 46 47 53 | mp2an | ⊢ ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) |
| 55 | 44 | nn0red | ⊢ ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℝ ) |
| 56 | 43 55 | ax-mp | ⊢ ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℝ |
| 57 | 3re | ⊢ 3 ∈ ℝ | |
| 58 | 56 57 | ltnei | ⊢ ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐵 , 𝐶 } ) ) |
| 59 | 54 58 | syl | ⊢ ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐵 , 𝐶 } ) ) |
| 60 | 59 | necomd | ⊢ ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ) |
| 61 | 60 | adantl | ⊢ ( ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ) |
| 62 | 42 61 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ) |
| 63 | tpeq1 | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐵 , 𝐶 } ) | |
| 64 | tpidm12 | ⊢ { 𝐵 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 } | |
| 65 | 63 64 | eqtr2di | ⊢ ( 𝐴 = 𝐵 → { 𝐵 , 𝐶 } = { 𝐴 , 𝐵 , 𝐶 } ) |
| 66 | 65 | fveq2d | ⊢ ( 𝐴 = 𝐵 → ( ♯ ‘ { 𝐵 , 𝐶 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 67 | 66 | neeq1d | ⊢ ( 𝐴 = 𝐵 → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 68 | 62 67 | imbitrid | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 69 | 41 68 | sylbi | ⊢ ( ¬ 𝐴 ≠ 𝐵 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 70 | hashprlei | ⊢ ( { 𝐴 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 ) | |
| 71 | prfi | ⊢ { 𝐴 , 𝐶 } ∈ Fin | |
| 72 | hashcl | ⊢ ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℕ0 ) | |
| 73 | 72 | nn0zd | ⊢ ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ) |
| 74 | 71 73 | ax-mp | ⊢ ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ |
| 75 | zleltp1 | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) ) ) | |
| 76 | 49 | a1i | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 ) |
| 77 | 76 | breq2d | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) ) |
| 78 | 77 | biimpd | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) ) |
| 79 | 75 78 | sylbid | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) ) |
| 80 | 74 47 79 | mp2an | ⊢ ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) |
| 81 | 72 | nn0red | ⊢ ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℝ ) |
| 82 | 71 81 | ax-mp | ⊢ ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℝ |
| 83 | 82 57 | ltnei | ⊢ ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐶 } ) ) |
| 84 | 80 83 | syl | ⊢ ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐶 } ) ) |
| 85 | 84 | necomd | ⊢ ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ) |
| 86 | 85 | adantl | ⊢ ( ( { 𝐴 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ) |
| 87 | 70 86 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ) |
| 88 | tpeq2 | ⊢ ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 , 𝐶 } ) | |
| 89 | tpidm23 | ⊢ { 𝐴 , 𝐶 , 𝐶 } = { 𝐴 , 𝐶 } | |
| 90 | 88 89 | eqtr2di | ⊢ ( 𝐵 = 𝐶 → { 𝐴 , 𝐶 } = { 𝐴 , 𝐵 , 𝐶 } ) |
| 91 | 90 | fveq2d | ⊢ ( 𝐵 = 𝐶 → ( ♯ ‘ { 𝐴 , 𝐶 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 92 | 91 | neeq1d | ⊢ ( 𝐵 = 𝐶 → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 93 | 87 92 | imbitrid | ⊢ ( 𝐵 = 𝐶 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 94 | 6 93 | sylbi | ⊢ ( ¬ 𝐵 ≠ 𝐶 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 95 | hashprlei | ⊢ ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 ) | |
| 96 | hashcl | ⊢ ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℕ0 ) | |
| 97 | 96 | nn0zd | ⊢ ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ) |
| 98 | 2 97 | ax-mp | ⊢ ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ |
| 99 | zleltp1 | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) ) ) | |
| 100 | 49 | a1i | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 ) |
| 101 | 100 | breq2d | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) ) |
| 102 | 101 | biimpd | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) ) |
| 103 | 99 102 | sylbid | ⊢ ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) ) |
| 104 | 98 47 103 | mp2an | ⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) |
| 105 | 96 | nn0red | ⊢ ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℝ ) |
| 106 | 2 105 | ax-mp | ⊢ ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℝ |
| 107 | 106 57 | ltnei | ⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐵 } ) ) |
| 108 | 104 107 | syl | ⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐵 } ) ) |
| 109 | 108 | necomd | ⊢ ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ) |
| 110 | 109 | adantl | ⊢ ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ) |
| 111 | 95 110 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ) |
| 112 | tpeq3 | ⊢ ( 𝐶 = 𝐴 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 , 𝐴 } ) | |
| 113 | tpidm13 | ⊢ { 𝐴 , 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } | |
| 114 | 112 113 | eqtr2di | ⊢ ( 𝐶 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } ) |
| 115 | 114 | fveq2d | ⊢ ( 𝐶 = 𝐴 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 116 | 115 | neeq1d | ⊢ ( 𝐶 = 𝐴 → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 117 | 111 116 | imbitrid | ⊢ ( 𝐶 = 𝐴 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 118 | 9 117 | sylbi | ⊢ ( ¬ 𝐶 ≠ 𝐴 → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 119 | 69 94 118 | 3jaoi | ⊢ ( ( ¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐶 ≠ 𝐴 ) → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 120 | 21 119 | sylbi | ⊢ ( ¬ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 121 | 120 | com12 | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ¬ ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) ) |
| 122 | 121 | necon4bd | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ) ) |
| 123 | 40 122 | impbid | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) ) |