This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double application of rspcedvdw . (Contributed by SN, 24-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2rspcedvdw.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2rspcedvdw.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | ||
| 2rspcedvdw.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 2rspcedvdw.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| 2rspcedvdw.3 | ⊢ ( 𝜑 → 𝜃 ) | ||
| Assertion | 2rspcedvdw | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rspcedvdw.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 2rspcedvdw.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | 2rspcedvdw.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 4 | 2rspcedvdw.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 5 | 2rspcedvdw.3 | ⊢ ( 𝜑 → 𝜃 ) | |
| 6 | 1 2 | rspc2ev | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝜃 ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝜓 ) |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝜓 ) |