This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class/vertex is a neighbor of another class/vertex in a simple graph iff the vertices are endpoints of an edge. (Contributed by Alexander van der Vekens, 11-Oct-2017) (Revised by AV, 26-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbusgreledg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| Assertion | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgreledg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 2 1 | nbusgr | ⊢ ( 𝐺 ∈ USGraph → ( 𝐺 NeighbVtx 𝐾 ) = { 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) |
| 4 | 3 | eleq2d | ⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ 𝑁 ∈ { 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ) |
| 5 | 1 2 | usgrpredgv | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) → ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 6 | 5 | simprd | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 7 | 6 | ex | ⊢ ( 𝐺 ∈ USGraph → ( { 𝐾 , 𝑁 } ∈ 𝐸 → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 8 | 7 | pm4.71rd | ⊢ ( 𝐺 ∈ USGraph → ( { 𝐾 , 𝑁 } ∈ 𝐸 ↔ ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) |
| 9 | prcom | ⊢ { 𝑁 , 𝐾 } = { 𝐾 , 𝑁 } | |
| 10 | 9 | eleq1i | ⊢ ( { 𝑁 , 𝐾 } ∈ 𝐸 ↔ { 𝐾 , 𝑁 } ∈ 𝐸 ) |
| 11 | 10 | a1i | ⊢ ( 𝐺 ∈ USGraph → ( { 𝑁 , 𝐾 } ∈ 𝐸 ↔ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) |
| 12 | preq2 | ⊢ ( 𝑛 = 𝑁 → { 𝐾 , 𝑛 } = { 𝐾 , 𝑁 } ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑛 = 𝑁 → ( { 𝐾 , 𝑛 } ∈ 𝐸 ↔ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) |
| 14 | 13 | elrab | ⊢ ( 𝑁 ∈ { 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ↔ ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) |
| 15 | 14 | a1i | ⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ { 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ↔ ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) |
| 16 | 8 11 15 | 3bitr4rd | ⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ { 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |
| 17 | 4 16 | bitrd | ⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |