This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the object part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofu1a.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| cofu1a.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| cofu1a.k | ⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | ||
| cofu1a.m | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝑀 , 𝑁 〉 ) | ||
| cofu1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | cofu1a | ⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝑀 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofu1a.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | cofu1a.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 3 | cofu1a.k | ⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | |
| 4 | cofu1a.m | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝑀 , 𝑁 〉 ) | |
| 5 | cofu1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 7 | 2 6 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 8 | df-br | ⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 9 | 3 8 | sylib | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 10 | 1 7 9 5 | cofu1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) ‘ 𝑋 ) = ( ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) ‘ ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ) ) |
| 11 | 4 | fveq2d | ⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) = ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) |
| 12 | 7 9 | cofucl | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 13 | 4 12 | eqeltrrd | ⊢ ( 𝜑 → 〈 𝑀 , 𝑁 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 14 | df-br | ⊢ ( 𝑀 ( 𝐶 Func 𝐸 ) 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ ( 𝐶 Func 𝐸 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐸 ) 𝑁 ) |
| 16 | 15 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) |
| 17 | 11 16 | eqtrd | ⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) = 𝑀 ) |
| 18 | 17 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) ‘ 𝑋 ) = ( 𝑀 ‘ 𝑋 ) ) |
| 19 | 3 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) |
| 20 | 2 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 21 | 20 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 22 | 19 21 | fveq12d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) ‘ ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 23 | 10 18 22 | 3eqtr3rd | ⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝑀 ‘ 𝑋 ) ) |