This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ofveu | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 2 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 4 | feu | ⊢ ( ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) |
| 6 | f1ocnvfvb | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) | |
| 7 | 6 | 3com23 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ) ) |
| 8 | dff1o4 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ◡ 𝐹 Fn 𝐵 ) ) | |
| 9 | 8 | simprbi | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 Fn 𝐵 ) |
| 10 | fnopfvb | ⊢ ( ( ◡ 𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) | |
| 11 | 10 | 3adant3 | ⊢ ( ( ◡ 𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
| 12 | 9 11 | syl3an1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐹 ‘ 𝐶 ) = 𝑥 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
| 13 | 7 12 | bitrd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
| 14 | 13 | 3expa | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
| 15 | 14 | reubidva | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ∃! 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 〈 𝐶 , 𝑥 〉 ∈ ◡ 𝐹 ) ) |
| 16 | 5 15 | mpbird | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |