This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofu1a.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| cofu1a.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| cofu1a.k | ⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | ||
| cofu1a.m | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝑀 , 𝑁 〉 ) | ||
| cofu1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cofu2a.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| cofu2a.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| cofu2a.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | cofu2a | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑋 𝑁 𝑌 ) ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofu1a.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | cofu1a.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 3 | cofu1a.k | ⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | |
| 4 | cofu1a.m | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝑀 , 𝑁 〉 ) | |
| 5 | cofu1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | cofu2a.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | cofu2a.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 8 | cofu2a.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 10 | 2 9 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 11 | df-br | ⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 12 | 3 11 | sylib | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 13 | 1 10 12 5 6 7 8 | cofu2 | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) 𝑌 ) ‘ 𝑅 ) = ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ‘ ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) ) ) |
| 14 | 4 | fveq2d | ⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) = ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) ) |
| 15 | 10 12 | cofucl | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 16 | 4 15 | eqeltrrd | ⊢ ( 𝜑 → 〈 𝑀 , 𝑁 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 17 | df-br | ⊢ ( 𝑀 ( 𝐶 Func 𝐸 ) 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ ( 𝐶 Func 𝐸 ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( 𝜑 → 𝑀 ( 𝐶 Func 𝐸 ) 𝑁 ) |
| 19 | 18 | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑁 ) |
| 20 | 14 19 | eqtrd | ⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) = 𝑁 ) |
| 21 | 20 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) 𝑌 ) = ( 𝑋 𝑁 𝑌 ) ) |
| 22 | 21 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ) 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝑁 𝑌 ) ‘ 𝑅 ) ) |
| 23 | 3 | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
| 24 | 2 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 25 | 24 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 26 | 24 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 27 | 23 25 26 | oveq123d | ⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ) |
| 28 | 2 | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 29 | 28 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) = ( 𝑋 𝐺 𝑌 ) ) |
| 30 | 29 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) |
| 31 | 27 30 | fveq12d | ⊢ ( 𝜑 → ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ‘ ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
| 32 | 13 22 31 | 3eqtr3rd | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( 𝑋 𝑁 𝑌 ) ‘ 𝑅 ) ) |